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---------------------------------------------------------------ABSTRACT---------------------------------------------------------------  
By uncovering hidden patterns in big clinical datasets, deep learning has great promise for the medical industry in 
terms of aiding in the diagnosis of a wide range of diseases. A deterioration in brain function is a hallmark of 
Parkinson's disease (PD), a neurodegenerative condition. Early automated detection of Parkinson's disease is 
challenging due to the behavioral similarities between those with the disease and healthy individuals. Our objective 
is to offer a practical model that can facilitate the early detection of Parkinson's disease. We utilized the VGRF 
gait signal dataset, which was acquired via Physionet, to distinguish between individuals with Parkinson's disease 
and healthy individuals. A novel deep learning architecture based on LSTM networks is presented in this study to 
automatically detect freezing of gait episodes in Parkinson's disease. Unlike typical machine learning techniques, 
this method effectively captures long-term temporal correlations in gait patterns and eliminates the requirement 
for human feature engineering, improving the diagnosis of Parkinson's disease. To avoid the issue of vanishing 
gradients and enable optimal information absorption, the LSTM network uses memory blocks instead of self-
connected hidden units. Methods such as L2 regularization and dropout have been employed to prevent 
overfitting. Adam, an optimizer based on stochastic gradients, is also used in the optimization process. The results 
demonstrate that our proposed approach, with 97.71% accuracy, 99% sensitivity, 98% precision, and 96% 
specificity, surpasses the state-of-the-art models in FOG episode recognition. This demonstrates how promising it 
is as an improved classification method for Parkinson's disease diagnosis. 
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1.INTRODUCTION 
In the substantia nigra, a specific area of the brain, a 
deficiency of dopamine neurons causes Parkinson's 
disease. In 2020, the Parkinson's Foundation reported that 
approximately one million Americans suffered from 
Parkinson's disease (PD) [1]. The majority of Parkinson's 
disease diagnoses are based on motor symptoms, such as 
tremors, stiffness, and difficulty walking. Therapy and 
medicine are used to manage the symptoms of Parkinson's 
disease, even though there is presently no recognized 
cure. On the other hand, early disease detection can aid in 
the development of suitable treatments or drugs to  

 the disease's progression. Today's medical sciences 
rely primarily on clinician observations to diagnose 
Parkinson's disease (PD), which can occasionally 
lead to false positives.  

   DL algorithms are becoming increasingly 
valuable in bioinformatics because of their ability 
to handle massive datasets and identify biomarkers, 
which not only results in more accurate predictions 
but also reduces the time required for diagnosis. A 
number of physiological markers, including tremor, 
handwriting samples, speech signals, and gait 
patterns, are used to identify Parkinson's disease. 

Speech analysis can be used to identify non-
motor symptoms of Parkinson's disease (PD), and 

sustained vowel and word phonation can be used to 
differentiate between people with and without PD 



Int. J. Advanced Networking and Applications   
Volume: 16 Issue: 05   Pages: 6591-6595 (2025) ISSN: 0975-0290 
 

6592

[2–4]. Potential biomarkers include handwriting's 
kinesthetic, cognitive, and perceptual-motor 
elements. 

Handwriting is a possible biomarker that includes 
perceptual motor, cognitive, and kinesthetic 
components. Using an LCD display and graphics 
tablet, this includes tests including the dynamic spiral 
test, stability test, and static spiral test. [5–8] have 
reported notable machine learning outcomes in this 
field.  
Additionally, ML models have been essential for 
deciphering the pathophysiology of Parkinson's 
disease by examining intricate genomic and 
transcriptome data [9–12]. Because structural 
magnetic resonance imaging offers high-resolution 
imaging of brain tissues, it is one of the brain imaging 
modalities that offers valuable insights for computer-
based PD diagnosis. For the diagnosis of Parkinson's 
disease, methods such as DatScan are also employed.  

 Dopamine levels in the brain have been identified 
using MRI scans and machine learning techniques [13–
15].  
A simple and affordable method of identifying motor 
symptom impairments is the gait-based categorization 
[16]. Interestingly, the gait cycle has unique traits like 
periodicity, deterministic behavior, and spatiotemporal 
aspects. Gait analysis enables the evaluation of motor 
functions and aids in determining the severity of the 
individuals' condition, in contrast to approaches that 
exclusively address non-motor functions, such as speech 
or handwriting [17]. Clinicians are therefore able to 
suggest suitable therapeutic measures to impede the 
advancement of the condition. 

In recent years, great progress has been made in 
applying deep learning algorithms to predict the stages 
of Parkinson's disease based on gait data. An overview 
of the contributions made by this effort is provided 
below:  
     i.The study employs an LSTM classifier to tackle the 
binary class classification problem in Parkinson's 
disease by effectively leveraging temporal information 
inside gait sequences. 
     ii. In this study, dropout and L2 regularization 
techniques are employed to guarantee the model's 
generalizability and avoid data overfitting.  
     iii. The Adam optimizer's minimal memory 
requirements and minimal hyperparameter tweaking 
make it a popular choice for optimization aimed at 
improving model training efficiency.  

The following is how the paper is organized: 
There have been numerous attempts to identify 

freezing of gait, which are discussed in Section 2. 
In section three, the recommended methodology is 
presented. 

2. RELATED WORK 
                       An interpretable end-to-end deep learning 

system was presented by Alharthi et al. [18] in order to 
integrate raw gait data and create a model for PD 
detection and classification. This model's F1 score 
average was 95.5%, with a low standard error of 0.28%. 
The Layer-wise Relevance Propagation (LRP) method 
was used for interpretation in order to obtain a better 
understanding of the model's decision-making process. 
                  Using the MDS-UPDRS scale to measure PD 
motor deficits is an issue that is addressed in this research 
[19]. A novel ordinal focus network was proposed by the 
authors to estimate MDS-UPDRS scores. Additionally, 
they suggested rater confusion estimation (RCE), a 
regularization technique, to deal with inter-rater 
variabilities. Their method was used to analyze video 
recordings of finger tapping and walking. According to 
results on a clinical dataset, the classification accuracy 
was 72% when using majority vote ground truth and 84% 
when anticipating the score of at least one rater. Even 
when clinical professionals disagree, this shows how 
computer-assisted technology can be used to track the 
motor deficits of PD patients. 
      The main focus of this study [20] was on 
Parkinsonism in older persons caused by drugs. The 
researchers used video data and ST-GCN to predict 
clinical scores related to parkinsonism. They performed 
temporal convolutional network baselines and a 
comparative study between ST-GCN models and 
traditional regression models. This required using various 
pose estimation libraries and the Microsoft Kinect device 
to extract joint trajectories from video. Using 3D joint 
trajectories, the results consistently showed that the 
suggested model performed better than alternative 
approaches. However, it is still difficult to predict 
Parkinsonism scores in fresh patients; the best models 
obtained F1-scores of 0.40 ± 0.02 for SAS-gait and 0.53 
± 0.03 for UPDRS. 
          

3.METHODOLOGY 

3.1 LSTM Architecture 
  In order to solve the exploding and vanishing gradient 
issues that plagued vanilla RNN, Hochreiter and 
Schmidhuber developed LSTM. Long-term dependencies 
in sequential data are particularly well-suited for LSTM 
[26, 27] LSTM uses memory cells instead of traditional 
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nodes in the buried layer, unlike RNN. This enables 
knowledge to be retained and recalled for extended 
periods of time. A graphic illustration of the LSTM 
architecture can be found in Fig. 1 (B). Three gates  
 

 
Fig. 1: Proposed workflow for FOG detection in 
Parkinson's subjects: Detailed LSTM architecture. 
                                                                                     
comprise the memory block. These are the forget, output, 
and input gates. Irrelevant inputs are reduced in impact by 
using multiplicative gate units [28]. The suggested process 
for identifying Freezing of Gait (FOG) in Parkinson's 
patients is shown in Fig. 1. 
                          The forget gate determines how 
much information is retained from the previous state 
and is computed as follows: 

               ft = σ(Whf ht−1 + Wxf xt + bf )             (1) 
Wxf and Whf represent the weight matrices corresponding 
to the input vector of the current cell and the output vector 
of the previous cell, respectively, where ht−1 is the output 
of the previous block, xt is the input sequence, and b is the 
bias vector. Using the current input vector as a guide, the 
input layer chooses which data is saved. In the current 
time step, the output gate computes the output. Here is a 
definition of the equations: 

            it = σ (Whiht−1 + Wxixt + bi)                    (2) 
            ot = σ (Whoht−1 + Wxoxt + bo)                (3) 

Combining the forget and input gate, the equation for the 
current cell state is given as: 

              Ct = ft ⊙ Ct−1 + it ⊙ C′t                       (4) 
Where, at time step t Ct = cell state and ⊙ = 
element-wise multiplication. ft ⊙ Ct−1 and it ⊙ 
C′t determine the information taken from the 
preceding cell state and current input [34]. Using 
the tanh activation function, the C′t is calculated as: 

                C′t = tanh (WhCht−1 + WxC xt + bC )   (5) 
 

The value of the hidden state is calculated as: 

                 ot = ht ⊙ tanh (Ct)                (6) 
 

3.1.1  Activation Function-ReLU 
ReLU is one of the most widely used activation functions 
in deep neural networks. Because it is parameter-free and 
non-saturating, it is favored because it accelerates the 
convergence of stochastic gradient descent (SGD) [29]. 
Comparing ReLU to saturated activation functions like 
sigmoid and tanh, LSTM performance has shown notable 
improvements. It converges faster and more precisely by 
keeping positive values and removing negative inputs. 
This enables efficient propagation of gradients during 
training. ReLU also solves the vanishing gradient problem 
and provides a straightforward operation because the 
derivative remains constant on the positive side. 
Fig. 1.Graphical representation of ReLU activation 
function. 

3.1.2 L2 regularization 
In order to reduce generalization error, this strategy 
modifies the loss function to apply penalties on excessive 
weight values. By preventing the weights from growing 
excessively, this modification helps keep the deep neural 
network from becoming more susceptible to noise. With 
L2 regularization, the cost function is provided by: 

           ݈  (7)  |2ݓ| ݅ ∑ ߣ + (ܺ ,ݓ)݈ = (ݓ)ܴߣ + (ܺ ,ݓ)݈ = (ܺ ,ݓ)̂

Here, λ represents the regularization strength, (ݓ, 
ܺ) and ܴ(ݓ) are cross-entropy loss function and a 
convex function respectively. 

3.1.3 Dropout 
With a probability of p, dropout randomly eliminates 
neurons from the network, altering the connections within 
it in contrast to L2 regularization, which penalizes large 
weight coefficients. In order to promote more robust 
learning, this method seeks to stop co-adaptation among 
the deep neural network's hidden nodes [30]. The 
fundamental idea behind dropout is to randomly deactivate 
parts of the model at each training cycle. This is the 
expression for the dropout function: 

 (8)                  ܾ݅ + ݅ݔܸ݆ܹ݅݅ ݅ ∑ = ݆ݍ                  

Here, ܸ݅ = Bernoulli random variables independent 
vector. For ܸ݅ = zero, its corresponding input node ݅ݔ is 
excluded from the computation. 

3.1.4 Adam optimizer 
An extensively used technique for deep neural network 
training is the Adam optimizer, which combines the 
RMSProp and momentum-based gradient descent 
algorithms [31, 32]. In order to update the weights in a 
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DNN, it can successfully replace the conventional SGD 
technique. This technique simply needs a few 
hyperparameters to be adjusted, and it uses less RAM. 

Additionally, updates to the parameters ensure a bounded 
norm. As a result, Adam optimization finds extensive 
application across various deep neural network tasks [33]. 

3.1.5 Softmax layer 
Determining the likelihood that an input belongs to a 
specific class is the responsibility of the final layer in the 
DNN. It measures the difference between the true label (p) 
and the predicted label (q) during training using the cross-
entropy loss function. This function is used as follows in 
order to update the weights w and biases b: 

              ℎ(ݍ ,) =− ∑ ݅ (9).                  … (ݔ)ݍ݈݃(ݔ) 

4. RESULTS AND DISCUSSIONS   
 
To train the LSTM network, several parameters were 
systematically changed to maximize performance 
throughout both training and testing. This experiment 
involved a number of trials to evaluate the performance of 
the proposed model. During the evaluation phase, we 
made improvements to our system by modifying a few 
parameters, including the hidden layer configuration, 
epoch count, batch size, and initial learning rate (LR). 
 
Reliability was evaluated using precision, sensitivity, 
specificity, and accuracy. The input layer in a three-layer 
model (input layer, one hidden layer, and output layer) 
maintains a fixed number of nodes 
                             

5. CONCLUSION 

In this work, an LSTM network based on gait patterns is 
presented for the early and noninvasive diagnosis of 
Parkinson's disease. The LSTM is adept at identifying 
long-term dependencies in time series data and is ideally 
suited for sequential data processing.  

The sample sizes for the inputs vary, so we divided the 
input frame into two parts to normalize it for the LSTM 
network. Data overfitting is successfully reduced by 
incorporating dropout in addition to L2 Regularization 
techniques, as demonstrated by accuracy and loss charts. 
PD detection is treated as a binary classification problem 
in the study by classifying PD and healthy participants 
using an Adam optimizer. The performance of the LSTM 
classifier is assessed using key metrics, including 
precision, sensitivity, specificity, and accuracy. It 
outperforms SOTA in the diagnosis of Parkinson's disease 
based on gait.Because of its exceptional sensitivity of 

99%, which indicates a very low percentage of false 
negatives, the suggested LSTM-based model performs 
exceptionally well. Additionally, the overall accuracy is 
97.71%, which is remarkably high, and a specifity 96%. 
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