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----------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 
This paper analyzes the impact of existing image enhancement techniques on latent fingerprint recognition, scores 
different datasets and their enhanced recognition results with an evaluation tool, summarizes and reviews existing 
datasets and related techniques, and analyzes the reasons for their mixed results. It evaluates the effects of different 
enhancement models, such as FingerGAN, on both public fingerprint datasets and newly compiled latent datasets, 
namely the MUST and LFIW databases. Using metrics like GMean, GSTD, AUC, and EER, the paper compares the 
recognition results before and after enhancement to determine the effectiveness of these techniques. The findings 
suggest that FingerGAN significantly improves recognition rates for latent fingerprints of poorer quality, while it has 
a mixed or negative impact on higher quality datasets. The analysis highlights the potential and challenges of enhancing 
latent fingerprints, especially in complex real-world scenarios. 
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I. INTRODUCTION 

Fingerprints have long been a cornerstone of human identity 
verification and matching. For common use, fingerprints are 
generally obtained from optical and capacitive capture 
devices, both of which have more accurate fingerprint capture 
quality. Normal fingerprint-matching technology has become 
more mature and has been widely used in various industries 
for security and authentication. However, latent fingerprints 
have always been a challenge. 
 
In the most widespread fingerprint detection method, the 
algorithm determines the fingerprint minutiae by detecting 
the endpoints of the fingerprint ridges and the bifurcation 
points of the fingerprint ridges. The fingerprint minutiae is 
saved as a template after noise reduction, de-duplication, and 
merging of proximity points. After alignment, the fingerprint 
minutiae is saved as a template by comparing the direction of 
the minutiae with the position of the minutiae in the template. 
After the alignment, the direction and position of the minutiae 
in the template can be compared to determine whether the 
fingerprints match or not according to the minutiae. 
 
In criminal investigations, fingerprints are often lifted from 
surfaces such as objects and walls, where their quality is 
typically inferior to that of fingerprints obtained through 
specialized equipment. Compared to normal fingerprints, 
latent fingerprints have less usable area, more background 
noise, carry item texture, have discontinuous recognizable 
areas, and possess unclear structures. Due to the above 
factors, the recognition rate of latent fingerprints will be 
much lower than that of ordinary fingerprints, and this 
undoubtedly slows down the speed of identity verification. 
 
Latent fingerprint detection is common in many contexts, yet 
most available models focus primarily on exact fingerprints 
as used in industry or research settings. To address this gap, 
we have compiled and evaluated several existing models 
using a widely recognized benchmark. Our evaluation was 

conducted on both public fingerprint datasets and a new set 
of latent fingerprint datasets. Additionally, we employed an 
existing latent fingerprint enhancement model to improve the 
quality of latent fingerprints and compared the enhanced 
results to the original scores. The primary focus of this paper 
is on the enhancement methods and the subsequent results 
they yield. 
 
The main contributions of this paper are summarized as 
follows. 
 
1. Evaluation of Latent Fingerprint Enhancement 

Techniques: it provides a comprehensive evaluation of 
various latent fingerprint enhancement techniques, 
comparing their effectiveness across different image 
quality levels. It systematically analyzes methods based 
on their ability to improve fingerprint clarity, ridge 
detail, and minutiae extraction under various conditions. 

2. Benchmarking of Performance Metrics: it introduces 
and applies a set of standardized performance metrics 
(e.g. FingerGAN[1]-[4]) to assess the quality of 
enhanced fingerprints. These metrics likely include 
factors like image sharpness, contrast, accuracy of 
minutiae detection, and the ability to recover fingerprint 
details from noisy or partial prints.  

3. Comparison with State-of-the-Art Methods: it 
compares current enhancement techniques against the 
most advanced state-of-the-art methods. By doing so, it 
highlights the strengths and weaknesses of each 
approach, providing a clear picture of the technological 
landscape and the practical limitations of current 
fingerprint enhancement technologies. 

4. Perspectives on Future Research Directions: Beyond 
evaluation, the paper offers perspectives on future 
research needs in the field. This could involve 
identifying gaps in current methods, suggesting new 
techniques or technologies (e.g., deep learning-based 
approaches), and proposing ways to address challenges 
like handling low-quality or compromised latent prints. 
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5. Practical Implications for Forensic Applications: 
The study's findings have direct implications for 
forensic science, particularly in improving the 
reliability of latent fingerprint matching in criminal 
investigations. By enhancing fingerprint quality, the 
paper contributes to advancing the field of biometric 
identification, particularly in the context of real-world 
forensic challenges. 

 
The rest of this paper is organized as follows. Section II 
provides background information on related techniques. 
Section III describes the experimental setups in detail. 
Section IV presents and discusses the experimental results. 
Finally, the paper is concluded in Section V. 
 

II. BACKGROUND 
Evaluating potential fingerprint enhancements will utilize 
many existing techniques and databases. This cannot be 
accomplished without the support of these techniques. 
 

A. Latent Fingerprint Recognition Techniques 
Neurotechnology[5] is a long history company and make a 
fast, accurate fingerprint evaluate model. This model has 
implemented a "latent mode" to match latent fingerprint that 
is the more usable latent fingerprint detection method. We 
evaluate this model in two datasets and their enhanced copy. 
 

B. Latent Fingerprint Enhance Techniques 
FingerGAN[1]-[4] is a project that utilizes adversarial 
generative neural networks for latent fingerprint 
enhancement. The detail information is optimized by means 
of regularization and weighting to improve the recognition 
rate of latent fingerprints. 
 
Generative Adversarial Networks (GAN)[6] is a type of 
machine learning model. Ian Goodfellow and his team 
introduced GANs in 2014. A GAN consists of two neural 
networks: a Generator and a Discriminator. The Generator 
creates data that mimics real examples. The Discriminator 
checks if the data is real or fake. 
 
In image processing, GANs are powerful. They learn 
complex patterns in data and can create high-quality images. 
They are used in image translation, style transfer, and image 
enhancement. For fingerprint enhancement, GANs improve 
the details of latent fingerprints and help increase recognition 
accuracy. 
 
GANs face challenges like mode collapse, where they 
produce limited varieties of images, and instability in training. 
Recent techniques have improved their stability and output 
quality. 
 

C. Latent Fingerprint Databases 
1) Multi-Surface Multi-Technique (MUST) Latent 
Fingerprint Database 

Multi-Surface Multi-Technique (MUST) Latent Fingerprint 
Database[7]  is a massive Multi-Surface latent fingerprint 
dataset that consists of more than 16,000 latent fingerprint 

impressions from 120 unique classes (120 fingers from 12 
participants). Through its fingerprint sampling of 
participating samples on up to 35 different surfaces, a high-
quality dataset of complex latent fingerprints was constructed 
for new latent fingerprint identification studies. This paper 
primarily evaluates the performance of the enhancement 
model by assessing the recognition accuracy of its database 
before and after enhancement. 

2) Latent Fingerprint in the Wild (LFIW) Database 
Latent Fingerprint in the Wild (LFIW) Database[8] is a 
brand-new latent fingerprint dataset that complements the 
MUST[7] database. It provides a large quantity of fingerprint 
data from different samples in specific contexts, making up 
for the deficiency of the MUST[7] database in terms of 
sample size. The LFIW[8] database consists of 13,180 
fingerprint samples from 132 subjects, collected under 
various real-world conditions. It includes the largest number 
of unique fingerprint instances among existing databases, 
offering a unique resource for assessing the performance of 
fingerprint recognition systems in challenging and diverse 
scenarios. This paper primarily evaluates the performance of 
the enhancement model by assessing the recognition accuracy 
of its database before and after enhancement. 

D. Evaluate performance Techniques 
PyEER[9]-[11] is a python package intended for biometric 
systems performance evaluation. It has been developed with 
the idea of providing researchers and the scientific 
community in general with a tool to correctly evaluate and 
report the performance of their systems [12]. 

III. EXPERIMENTAL SETUPS 

A. General 
Set up FingerGAN[1]-[4] and use the pre-trained model it 
provides. Compile its corresponding matcher. Then in order 
for the image to be read correctly by the model, we need to 
convert the image to 8-bit grayscale format so that the 
preparation is complete. And we use PyEER[9]-[11] to 
evaluate the performance and matching rate of the models and 
generate reports that have been compared. 
 
We used the MUST[7] dataset and the LFIW[8] dataset and 
their augmented versions, considering that the augmented 
LFIW[8] format color is different from MUST[7], we 
introduced a version with the same base color as the MUST[7] 
dataset after inversion of the colors, so that there are five 
datasets in total. 
 
Then, we followed the following formula to invert the image 
to get a consistent background color in enhanced images. 

(ݕ,ݔ)newܫ = 255−  (ݕ,ݔ)ܫ
Finally, we identified them using the evaluation library 
provided by Neurotechnology, obtained the finalize outputs 
and analyzed them using PyEER[9]-[11]. 

B. Intruduce Datasets 
The types of  LFIW[8] images employed in this study 
include the following: 
 Opt-N1/N2: Reference fingerprints obtained from 

optical 
 sensors across two distinct sessions. 
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 Capa-N1/N2: Reference fingerprints obtained from 
capacitive sensors across two distinct sessions. 

 Wall: Latent fingerprints captured from wall surfaces. 
 iPad: Latent fingerprints captured from iPad surfaces. 
 Metal: Latent fingerprints captured from aluminum foil 

surfaces. 
The types of MUST[7] images employed in this study include 
the following: 
 Black dustbin bag + Super glue: Latent fingerprints on 

black dustbin bag developed with super glue, 
photographed and scanned. 

 Black tape + White wetwop: Latent fingerprints on 
black tape developed with white wetwop, photographed 
and scanned. 

 Brown cardboard + Ninhydrin: Latent fingerprints on 
brown cardboard developed with ninhydrin, 
photographed under normal and UV light, and scanned. 

 Ceramic Plate + Black powder: Latent fingerprints on 
ceramic plate developed with black powder, 
photographed, lifted with clear and frosted tape, and 
scanned. 

 Ceramic Plate + Magnetic powder: Latent fingerprints 
on ceramic plate developed with magnetic powder,  
photographed and lifted with clear tape. 

 Clear duct tape + Black wetwop: Latent fingerprints on 
clear duct tape developed with black wetwop, 
photographed and scanned with white background. 

 Glass bottle + Powder: Latent fingerprints on glass 
bottle developed with white and orange fluorescent 
powder, photographed. 

IV. EXPERIMENTS RESULTS 

A. For MUST  
 The results from the MUST[7] dataset demonstrate 
significant  improvements across various performance 
metrics following enhancement, underscoring the 
effectiveness of the applied techniques. The analysis reveals 
prominent changes, especially in metrics related to genuine 
and impostor score distributions, classification accuracy, and 
error rates. 
 
The GMean and GSTD saw substantial increases post-
enhancement. GMean rose from 84.33 to 733.00, and GSTD 
increased from 150.34 to 728.04. This indicates that the 
enhancement markedly shifted the genuine score distribution 
in terms of central tendency and variability. The significant 
increase in both mean and standard deviation suggests that 
genuine scores became more distinguishable from impostor 
scores. This contributed to improved model performance. By 
expanding the distribution of genuine scores, the distinction 
between genuine and impostor matches became clearer. This 
is crucial for enhancing accuracy. 
 
The Impostor Scores Distribution Mean (IMean) increased 
moderately from 8.92 to 13.63, while the Standard Deviation 
(ISTD) slightly decreased from 12.30 to 11.65.This reduced 
overlap with genuine scores. A lower standard deviation 
among impostor scores indicates greater consistency in 
assessing impostor matches. This helps the model better 
distinguish between true and false matches. 

 
Fig.1 Original 

 
Fig.2 Enhanced 

 
The Sensitivity Index (d') increased from 0.71 to 1.40, 
reflecting a significant improvement in the model’s ability to 
differentiate genuine from impostor scores. A higher d' value 
indicates better separation, leading to more reliable identity 
matches. The Area Under the Curve (AUC) improved from 
0.77 to 0.84. This shows an increased ability of the classifier 
to discriminate between genuine and impostor matches. This 
metric highlights improved overall classification capacity, 
demonstrating better true positive identification while 
minimizing false positives. 
 
The J Index rose from 0.50 to 0.65, while the Matthews 
Correlation Coefficient (MCC) increased from 0.61 to 0.74. 
These metrics indicate an improved balance between 
sensitivity and specificity. Higher values signify better 
identification of correct matches and rejections, with fewer 
misclassifications. MCC, known for its robustness against 
class imbalance, further underscores the enhancement’s 
effectiveness in improving model robustness. 
 
The Equal Error Rate (EER) and related metrics (EERlow and 
EERhigh) all showed reductions. This points to fewer 
instances where the false acceptance rate (FAR) and false 
rejection rate (FRR) were equal. EER decreased from 0.30 to 
0.24, with EERlow dropping from 0.30 to 0.22 and EERhigh 
decreasing from 0.31 to 0.26. Reduced EER values indicate a 
more accurate balance between FAR and FRR. This suggests 
the enhancement procedure improved the model’s reliability 
by lowering false positive and negative rates. 
 
FMR and FNMR metrics also declined. This reinforces that 
the enhancement led to fewer incorrect matches and fewer 
falsely rejected genuine matches. For instance, FMR1000 
decreased from 0.58 to 0.37 and FMR100 from 0.51 to 0.34. 
This demonstrates improved precision in separating genuine 
and impostor matches. Moreover, ZeroFMR and ZeroFNMR 
metrics either remained high or showed slight improvement. 
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This indicates enhanced model performance even under 
stringent zero-false thresholds. 
 
Overall, the enhancements applied to the MUST[7] dataset 
substantially improved key performance metrics. These 
include the ability to differentiate between genuine and 
impostor scores, classification accuracy, and error rates. The 
increased GMean, decreased impostor score variability, 
enhanced Sensitivity Index (d'), and improved AUC 
collectively illustrate the enhancement’s reinforcement of the 
model’s robustness and accuracy. Moreover, lower EER and 
FMR values suggest improved threshold determination, 
further minimizing false decisions. These improvements 
indicate the enhancement methodology was highly effective, 
boosting overall performance and reliability for practical 
identity verification tasks. 
 
 
 
 

 
Fig.3 Original DET 

Table 1. Experimental results 

Dataset/Indicator MUST  LFIW 
Original Enhanced  Original Enhanced Enhanced(Invert) 

GMean 84.33  733.00   251.67  286.14  254.88  
GSTD 150.34  728.04   309.98  458.84  393.19  
IMean 8.92  13.63   11.36  10.54  10.37  
ISTD 12.30  11.65   9.06  9.38  9.64  

Sensitivity index (d’) 0.71  1.40   1.10  0.85  0.88  
AUC 0.77  0.84   0.82  0.77  0.78  

J-Index 0.50  0.65   0.63  0.51  0.52  
J-Index_TH 31.00  38.00   30.00  33.00  33.00  

MCC 0.61  0.74   0.73  0.66  0.67  
MCC_TH 55.00  245.00   61.00  66.00  66.00  
EERlow 0.30  0.22   0.22  0.30  0.32  
EERhigh 0.31  0.26   0.26  0.34  0.32  

EER 0.30  0.24   0.24  0.32  0.32  
ZeroFMR 0.98  0.99   0.97  0.99  0.98  
FMR1000 0.58  0.37   0.41  0.51  0.49  
FMR100 0.51  0.34   0.37  0.48  0.47  
FMR20 0.45  0.32   0.33  0.46  0.45  
FMR10 0.41  0.30   0.31  0.43  0.42  

ZeroFNMR 1.00  1.00   1.00  1.00  1.00  
EER_TH 19.00  23.00   19.00  16.00  16.00  

ZeroFMR_TH 675.00  2283.00   921.00  1715.00  1335.00  
FMR1000_TH 51.00  69.00   45.00  45.00  45.00  
FMR100_TH 38.00  39.00   33.00  34.00  34.00  
FMR20_TH 31.00  31.00   26.00  27.00  27.00  
FMR10_TH 28.00  27.00   23.00  23.00  23.00  

ZeroFNMR_TH 0.00  0.00    0.00  0.00  0.00  
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Fig.4 Enhanced DET 
 
 

B. For LFIW 
The results from the LFIW[8] dataset provide a nuanced view 
of the impact of different enhancement techniques on model 
performance. The analysis focuses on the original data, the 
enhanced version, and the enhanced (inverted) version, 
highlighting how each modification affected key 
performance metrics related to score distributions, 
classification accuracy, and error rates. These changes help 
illustrate both the strengths and the potential limitations of the 
applied enhancement techniques. 
 
The Genuine Scores Distribution Mean (GMean) increased 
from 251.67 to 286.14 after enhancement, while the enhanced 
(inverted) version showed a slight increase to 254.88. The 
Standard Deviation (GSTD) of the genuine scores also rose, 
from 309.98 to 458.84 for the enhanced version and to 393.19 
for the inverted version. These changes indicate that the 
enhancement process led to a broader spread of genuine 
scores, making them slightly more distinguishable from 
impostor scores. However, the inverted enhancement showed 
a smaller increase in variability, suggesting a more 
conservative effect compared to the regular enhancement. 
 
The Impostor Scores Distribution Mean (IMean) decreased 
from 11.36 to 10.54 after enhancement, while the enhanced 
(inverted) version showed a moderate decrease to 10.37. The 
Standard Deviation (ISTD) for impostor scores also 
decreased from 9.38 to 9.64 for both enhanced versions. This 
indicates that both types of enhancement reduced the central 
tendency and variability of impostor scores, helping to 
improve model performance by tightening the impostor score 
distribution and making it more distinct from genuine scores. 
 
The Sensitivity Index (d') dropped from 1.10 to 0.85 after 
enhancement, but slightly increased to 0.88 for the enhanced 
(inverted) version. This suggests that the enhancement 
reduced the ability to distinguish genuine matches from 
impostor matches, while the inverted enhancement mitigated 
some of this negative impact. Lower d' values typically 
indicate reduced discrimination power, which highlights the 
trade-offs involved in these enhancement techniques. 
 

 
 
The Area Under the Curve (AUC) decreased from 0.82 to 
0.77 for the enhanced version and to 0.78 for the enhanced 
(inverted) version. This reduction suggests that the classifier's 
overall ability to distinguish between genuine and impostor 
matches was slightly compromised. The \textit{AUC} metric 
is a comprehensive indicator of model classification 
performance, and this decrease implies that enhancement had 
some unintended effects on the model's discrimination ability. 
 
The Youden's J Index (J-Index) decreased from 0.63 to 0.51 
for the enhanced version and to 0.52 for the enhanced 
(inverted) version. Similarly, the Matthews Correlation 
Coefficient (MCC) dropped from 0.73 to 0.66 for the 
enhanced version and to 0.67 for the inverted enhancement. 
These metrics are both measures of classification 
performance, with higher values indicating a better balance 
between sensitivity and specificity. The observed declines 
indicate that enhancement negatively impacted the balance 
between correct and incorrect matches. 
 
The Equal Error Rate (EER) slightly increased, with EER 
values going from 0.30 to 0.32 after enhancement. This 
increase reflects a higher point of balance between  false 
acceptance rate (FAR) and false rejection rate (FRR), which 
means the enhancement led to a slight decline in overall 
classification performance. EERlow and EERhigh also 
showed increases, pointing to a general trend of reduced 
precision post-enhancement. 
 
FMR and FNMR values increased for various thresholds. For 
example, FMR1000 increased from 0.41 to 0.51 for the 
enhanced version and to 0.49 for the inverted version.  
FMR100 also rose from 0.37 to 0.48 for the enhanced version 
and to 0.47 for the inverted version. This demonstrates that 
the enhanced versions had a higher tendency to incorrectly 
accept impostor matches. However, metrics like ZeroFMR 
and ZeroFNMR remained high, indicating that the model still 
performed well under strict thresholds despite the increase in 
false match rates. 
 
The enhancements applied to the LFIW[8] dataset showed 
mixed results. On one hand, the genuine score distribution 
was broadened, which could theoretically make it easier to 
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distinguish genuine matches from impostor matches. On the 
other hand, decreases in key metrics like AUC, J-Index, MCC, 
and increases in EER suggest that the enhancement 
techniques may have introduced new challenges for 
classification accuracy. The enhanced (inverted) version 
appeared to mitigate some negative impacts but did not fully 
address the decline in performance. These findings suggest 
that while enhancement can improve certain aspects of score 
distribution, careful consideration MUST[7] be given to the 
specific effects on classification accuracy and the balance 
between false matches and false non-matches. A more 
tailored enhancement approach may be needed to fully 
optimize performance for the LFIW[8] dataset. 
 

 
C. Subjective Overview 

 
 
By visually inspecting the enhanced images, it is clear that 
the enhancement process had a different impact on the dataset. 
In the MUST[7] sample (Fig.14), the enhanced background 

was significantly cleaner, which helped to improve feature 
extraction and clarity. This process effectively reduces noise 
and removes extraneous background elements, thus 
improving the quality of the fingerprint features. 
 
In contrast, the results for the LFIW[8] sample (Fig.11) are 
more complex. The intricate background of the original 
LFIW[8] image resulted in some background elements being 
incorrectly enhanced as fingerprint features, causing the 
problem of over-enhancement, i.e., irrelevant regions are 
enhanced along with the real fingerprint features, thus 
interfering with the recognition. The inverted version of the 
enhanced LFIW[8] sample (Fig.13) solves some of these 
problems by mitigating the enhancement effect so that the 
enhancement of the background is less pronounced. However, 
the complexity of the original background remains a 
challenge, and interference with fingerprint features remains. 
 
Overall, the MUST[7] samples benefited more from the 
enhancement process due to the simpler backgrounds, while 
the LFIW samples showed over-enhancement in areas with 
complex backgrounds. This emphasizes the importance of 
considering the original image quality and background 
features when applying enhancement techniques. 

V. CONCLUSION 
A more rough conclusion is that, for better quality datasets, 
FingerGAN[1]-[4] rather deteriorates the recognition rate. 
But for poorer quality datasets, meaning more “latent”, 
FingerGAN[1]-[4] can improve the recognition rate. 
 
Therefore, when using enhancement techniques to improve 
recognition rates, it is important to combine them with a 
fingerprint scoring system that avoids enhancing higher-
quality fingerprints. This approach ensures more consistent 
and superior results. Additionally, it provides guidance for 
data capture: using a cleaner background plate enhances 
outcomes. 
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