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----------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 
The safety and efficiency of forklift operations in industrial settings are critically dependent on the accurate detection 
and precise distance measurement of obstacles. This study introduces an innovative deep learning framework that 
synergizes advanced computer vision methods for obstacle detection with a novel approach to distance estimation using 
monocular imaging. By harnessing the capabilities of these techniques, the proposed system significantly enhances the 
safety protocols during forklift navigation. Our comprehensive experimental evaluation demonstrates notable 
advancements in the accuracy of obstacle identification and the reliability of distance calculations across a range of 
obstacle sizes and environmental conditions. The outcomes position this research as a pivotal step towards the 
automation and optimization of forklift operations. 
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I. INTRODUCTION 

Obstacle detection and distance estimation are essential 
components of industrial forklift operations, critical for 
maintaining a safe working environment. In the context of 
material handling, forklifts are required to navigate through 
often crowded and busy spaces, where the presence of static 
and dynamic obstacles poses a constant risk of collisions. The 
ability to accurately identify and assess the distance of these 
obstacles is paramount to prevent accidents, ensure the well-
being of workers, and protect equipment from damage. 
 
The precision of obstacle detection systems significantly 
enhances the operator's awareness of their surroundings. This 
heightened awareness is particularly beneficial in settings 
where visual obstructions or poor lighting conditions might 
otherwise hinder the operator's ability to see potential hazards. 
With the aid of such systems, operators can make informed 
decisions about their movements, leading to safer navigation 
and reducing the likelihood of incidents. Moreover, the 
efficiency of forklift operations directly correlates with the 
effectiveness of obstacle detection and distance estimation. 
By minimizing the time spent on cautious maneuvering and 
the potential for accidents, forklifts can operate at optimal 
productivity levels. This not only improves the overall 
workflow but also contributes to a more confident and 
focused operation, as the operators can rely on technology to 
assist with safety measures. 
 
Compliance with safety regulations is another key aspect 
where obstacle detection and distance estimation play a 
crucial role. Industries are subject to strict safety standards, 
and the implementation of advanced safety features such as 
these systems helps companies adhere to these standards. By 
doing so, they avoid the financial and legal repercussions 

 
 

associated with workplace accidents and demonstrate a 
commitment to worker safety. The adaptability of obstacle 
detection systems to dynamic industrial conditions is also 
noteworthy. As warehouse layouts change and activity levels 
fluctuate, a robust system can adapt to these changes, 
ensuring that safety measures remain effective despite the 
evolving environment. This adaptability is particularly 
important as industries strive to maintain a competitive edge 
by regularly updating their operational processes. 
 
In the emerging era of automation, obstacle detection and 
distance estimation are becoming integral to the development 
of autonomous forklifts. These technologies provide the 
spatial intelligence necessary for autonomous vehicles to 
operate safely without human intervention, marking a 
significant step forward in the automation of industrial 
processes. While skilled operators are vital to the safe 
operation of forklifts, the integration of advanced obstacle 
detection systems serves to minimize the risk of human error. 
These systems offer an additional layer of safety that is not 
subject to fatigue or distractions, ensuring a consistent level 
of vigilance and further reducing the potential for accidents. 
 
Therefore, the integration of obstacle detection and distance 
estimation technologies into forklift operations is a critical 
strategy for enhancing safety, efficiency, and regulatory 
compliance. As industrial environments continue to evolve, 
the importance of these systems in maintaining a safe and 
productive workplace will only continue to grow. 
 
This paper is organized in the following: Section 2 reviews 
related work, while Section 3 details our proposed method. 
Section 4 discusses the training strategy, and Section 5 
presents experimental results. Section 6 concludes the paper. 
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II. BACKGROUND AND RELATED WORK  
Traditional methods for obstacle detection and distance 
estimation have been extensively researched and developed 
to enhance the safety and efficiency of autonomous vehicles 
and industrial machinery, including forklifts. These methods 
can be categorized into sensor-based and computer vision-
based techniques, each with unique characteristics and 
applications. 
 
Sensor-based methods have long been employed for their 
ability to provide reliable and robust detection in various 
environmental conditions. Ultrasonic sensors, for example, 
are known for their simplicity and cost-effectiveness. They 
operate by emitting sound waves and measuring the time 
delay of the echo to determine the distance to an obstacle. 
Despite their widespread use, ultrasonic sensors have limited 
resolution and can be sensitive to noise, which may affect 
their performance in noisy industrial environments [1]. 
Infrared sensors offer another means of detection, often used 
for their ease of use and resistance to environmental 
conditions. They function by emitting infrared light and 
measuring the reflection to identify obstacles. However, 
infrared sensors may struggle with accuracy in environments 
with varying temperatures or diverse surface materials, as 
these factors can influence the reflection of infrared light [2]. 
Laser-based systems, such as LIDAR, have become a 
standard in many high-precision applications due to their 
ability to generate detailed, three-dimensional maps of the 
environment. LIDAR systems are highly accurate and 
capable of detecting a wide range of obstacles, but they tend 
to be more expensive and require significant computational 
power for data processing and interpretation [3]. 
 
Computer vision-based methods have gained popularity with 
the advancement of digital image processing and machine 
learning techniques. Monocular vision systems, which use a 
single camera, rely on algorithms to estimate depth from a 
sequence of images. These systems can be less expensive and 
more flexible than sensor-based approaches, but they may 
suffer from inaccuracies in low-textured environments or 
under poor lighting conditions [4]. Stereo vision systems, 
which utilize two cameras to capture and compare images, 
offer improved depth estimation by calculating the disparity 
between the two images. This method can provide more 
accurate and reliable results than monocular systems, but they 
require careful calibration and synchronization between the 
cameras [5]. 
 
Overall, traditional methods for obstacle detection and 
distance estimation have made significant strides, offering a 
range of solutions for different applications. Sensor-based 
methods provide robust and reliable detection, while 
computer vision techniques offer high-resolution and flexible 
solutions. However, each method has its limitations, and 
ongoing research aims to address these challenges and further 
improve the performance of these systems.  
 
 

2.1. Deep Learning based Methods 
 
The evolution of deep learning in object detection has 
significantly impacted the field of computer vision, 

particularly in the context of monocular vision for distance 
estimation. Deep learning-based approaches have 
transitioned from handcrafted feature extraction methods to 
powerful convolutional neural networks (CNNs) that can 
automatically learn complex representations from data. 
Initially, deep learning models like AlexNet and VGGNet 
revolutionized object detection by demonstrating the 
effectiveness of CNNs in feature extraction and classification 
tasks [6], [7]. These models, however, were primarily 
designed for image classification and had to be adapted for 
object detection in more complex scenes. 
 
The introduction of YOLO (You Only Look Once) marked a 
turning point in real-time object detection, as it provided a 
single-pass approach to detecting objects in images with 
bounding boxes and class probabilities [8]. YOLO's success 
led to a series of improvements, including YOLOv2, 
YOLOv3, and YOLOv4, each enhancing the previous version 
in terms of speed, accuracy, and the ability to handle more 
intricate object interactions [9], [10], [11], [12]. The role of 
monocular vision in distance estimation has also seen 
significant advancements with the integration of deep 
learning. Early attempts at monocular depth estimation relied 
on traditional machine learning techniques and were limited 
by their ability to generalize to unseen scenes [13]. With the 
advent of deep learning, models could be trained on large 
datasets to learn depth cues from monocular images, leading 
to more accurate depth predictions [14], [15]. 
 
The combination of object detection and distance estimation 
in monocular vision systems has been further advanced by the 
development of architectures that can jointly learn both tasks. 
These models leverage the spatial and semantic information 
from the monocular images to estimate not only the location 
of objects but also their depth and distance from the camera 
[16]. Despite these advancements, challenges remain in the 
area of monocular depth estimation, such as dealing with 
ambiguous depth cues in large open scenes or under varying 
lighting conditions. Current research continues to explore 
ways to improve the robustness and accuracy of these systems, 
including the use of attention mechanisms, contextual 
information, and multi-task learning strategies [17]. 
 
The integration of deep learning into object detection and 
distance estimation using monocular vision has opened up 
new possibilities for applications in autonomous vehicles, 
robotics, and augmented reality. The ongoing development of 
these techniques promises to further enhance the capabilities 
of monocular vision systems, bringing them closer to the 
performance of stereo and other more complex sensing 
systems. 
 

2.2. Small Objects Detection in Complex Scenes 
 
The accurate detection of small objects in complex scenes has 
been a challenging task in the field of computer vision. 
However, with the advent of deep learning, significant 
progress has been made in developing neural network 
architectures that can effectively address this issue. These 
advancements are crucial for applications such as 
surveillance, autonomous driving, and industrial monitoring, 
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where detecting and identifying small objects amidst 
cluttered backgrounds is essential. 
 
One of the key advancements in neural network architectures 
that have improved small object detection is the development 
of feature pyramid networks (FPNs). FPNs address the issue 
of object scale variation by creating a hierarchy of feature 
maps at different resolutions. This allows the network to 
maintain and utilize high-resolution information from earlier 
layers while benefiting from the semantic context provided 
by deeper layers. By doing so, FPNs enhance the detection of 
small objects by capturing fine details without losing spatial 
information [18]. 
 
The use of attention mechanisms has also been a notable 
development in recent neural network architectures. 
Attention modules, such as the non-local neural network, 
enable the model to dynamically focus on relevant parts of 
the input image, which is particularly useful for small object 
detection. By allocating more computational resources to the 
regions of interest, these attention-based models can better 
capture the details of small objects and improve detection 
accuracy [19]. 
 
Furthermore, the concept of transfer learning and the use of 
pre-trained models have played a significant role in 
enhancing small object detection. Models pre-trained on 
large-scale datasets, such as ImageNet, can be fine-tuned for 
specific tasks involving small objects. This approach 
leverages the rich feature representations learned from vast 
and diverse datasets, enabling the detection models to 
generalize better to small objects in complex scenes [20]. 
 
Advancements in neural network architectures, such as the 
development of FPNs, the incorporation of attention 
mechanisms, and the use of transfer learning, have 
collectively contributed to the improved detection of small 
objects in complex scenes. These innovations have led to 
more accurate and efficient detection systems, which are vital 
for a wide range of applications where the accurate 
identification of small objects is critical. 

III. PROPOSED METHOD 
In this work, we present a novel deep learning framework that 
unifies the tasks of obstacle detection and distance estimation, 
with a particular emphasis on small objects. The proposed 
method is designed to overcome the limitations of existing 
approaches, which often treat these tasks separately, leading 
to suboptimal performance in complex, real-world scenarios. 
The structure of the proposed method is illustrated in Fig. 1. 
 

3.1    Backbone Network 
The backbone network is composed of a series of 
convolutional layers that serve to extract features at various 
scales. The initial layers employ larger kernel sizes (e.g., 7x7) 
with corresponding strides to reduce the spatial dimensions 
of the input while capturing low-level features. Subsequent 
layers utilize smaller kernel sizes (e.g., 3x3) with overlapping 
strides to refine these features and capture more intricate 
patterns. The network incorporates skip connections, inspired 
by ResNet architecture, which allow for the fusion of low-
level features with high-level abstractions. This design choice 

is critical for preserving spatial information, which is 
essential for the accurate detection of small objects. The 
backbone is shown in Fig. 2. 
 

3.2    Object Detection Pathway 
The object detection pathway consists of a sequence of 
specialized layers designed to identify and localize obstacles 
within the scene. This pathway includes a region proposal 
network (RPN) that scans the feature maps produced by the 
backbone to identify regions of interest (RoIs). These RoIs 
are then processed by a series of convolutional layers 
equipped with non-linear activation functions to predict 
bounding boxes and class probabilities. To enhance the focus 
on small objects, the pathway incorporates a feature pyramid 
structure that aggregates features from different layers. This 
pyramid structure ensures that the network does not lose sight 
of small object details when processing larger context. The 
object detection pathway is shown in Fig. 3. 

 

 
Fig. 1. The structure of the proposed method. 

 
Fig. 2.  The structure of the backbone. 
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3.3    Distance Estimation Pathway 
The distance estimation pathway leverages the temporal 
consistency of video frames to infer depth information. This 
pathway is equipped with a self-supervised learning module 
that estimates the relative motion between the camera and the 
objects in the scene. The module uses optical flow estimation 
techniques to analyze the movement of feature points 
between consecutive frames, which is then used to predict the 
depth of the objects. A novel aspect of this pathway is the 
dynamic scale factor adjustment, which adapts the depth 
estimation based on the size of the detected objects. This 
mechanism prevents small objects from being underestimated 
in distance and ensures that the network's depth estimation is 
accurate across a range of object sizes. The distance 
estimation is shown in Fig. 4. 
 

 

3.4    Integration of Pathways 
The integration of the object detection and distance 
estimation pathways is facilitated through a series of fusion 
layers. These layers combine the output of the object 
detection pathway, which includes the bounding boxes and 
class labels, with the depth estimates from the distance 
estimation pathway. The fusion process is designed to 
maximize the synergy between the two tasks, leading to 
improved performance in both detection and distance 
estimation. The integrated network is shown in Fig. 5. 
 
 

 
Fig. 5. The structure of the integrated network. 

 

3.5   Training Strategy 
The network is trained using a combined loss function that 
optimizes for both object detection accuracy and distance 
estimation precision. The loss function includes components 
for bounding box regression, class probability, and depth 
estimation. The training process involves a large dataset of 
annotated images and video sequences, with data 
augmentation techniques employed to increase the robustness 
of the network to variations in object size, lighting, and scene 
complexity. 
 

IV. EXPERIMENTAL RESULTS 

4.1 Evaluation Metrics 
 
The objective of our study is to accurately estimate the 
bounding boxes of objects and their distances with a high 
degree of precision, aligning as closely as possible with the 
actual facts. To this end, we employ "precision" and "recall" 
as the primary indicators to assess the precision of object 
detection. For depth prediction, we utilize four distinct 
metrics for evaluation: the absolute relative difference (Abs 
Rel), the squared relative difference (Squa Rel), the root of 
the mean squared errors (RMSE), and the root of the mean 
squared errors calculated from the logarithms of the predicted 
and ground truth distances (RMSElog). Here, ݀௜

௚௧  represents 
the ground truth distance, while ݀௜  signifies the predicted 
distance. The computation of these errors is based on the 
following five equations: 

ܶℎݏ݁ݎℎ݈݀݋: ௜݂݀݋ % .ݏ  .ݐ maxቆ
݀௜
݀௜
௚௧ ,

݀௜
௚௧

݀௜
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4.2 Evaluation Resultss 
 
We created a private dataset contains videos from forklift 
operation environment for the performance evaluation. 
 
 

 
Fig. 3. The structure of the object detection pathway. 

 
Fig. 4. The structure of the distance estimation pathway. 
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For object detection network, we used 3000 training images 
and 3000 test images extracted from videos in our dataset, 
comprising a total of 100,000 labeled objects, then grouped 
the categories in the target detection dataset into just three 
categories: people, vehicle, and obstacle, and used these three 
categories for both training and validation. We compare the 
proposed method with famous and most commonly used 
object detection network YOLOv5, and the proposed method 
has better precision and recall rates than YOLOv5. The final 
results for obstacle detection are shown in Table 1. 
 

Table 1. Detection results compared to YOLOv5 network. 
Class Method Precision(%) Recall(%) 
People Proposed 96.7 95.6 

YOLOv5 95.4 93.5 
Vehicle Proposed 95.2 92.8 

YOLOv5 94.4 90.2 
Obstacle Proposed 92.9 88.8 

YOLOv5 90.3 81.5 
 

 
For the distance estimate network, before training, to split raw 
data, we use the same method as obstacle detection. The 
training data contains 8000 images, validation data contains 
4000 images, and test data contains 500 images. Then, we 
filter static frames using the default camera matrix for all 
images. The focal length is averaged. Further, we add channel 
spatial and self-attention modules to the depth decoder. Both 
of them can enhance the effect. The self-attention module 
performs better than the CBAM module because our data are 
sequential, and similar objects can be better distinguished and 
further focused. The actual distance is then acquired. We test 
our method and other classical methods, and the bold 
numbers in Table 2 shows that our proposed models are able 
to predict distances with lower absolute errors. Our proposed 
method has lower Abs Rel, Squa Rel, RMSE compared to the 
other selected classical methods. And the proposed method 
also has higher ߪ values then the other approaches in Table 2. 
 
Several examples of object detection and distance estimation 
in videos frames are illustrated in Fig. 5. From Fig. 5 we can 
notice that, the proposed method can very well detect both big 
and small obstacles on the working path of the forklift, while 
their distances to the vehicle are accurately estimated. 
 
 
 
 
 

 
 

 
 

 
 

 
 

 
Fig. 5. Examples of object detection and distance 
estimation results in video frames. 

 
 
 

Table 2. Quantitative performance comparison of our network with other self-supervised monocular methods for distance 
estimation. 

Approach Lower is better Higher is better 
Abs Rel Squa Rel RMSE Log ߪ < ߪ 1.25 < 1.25ଶ ߪ < 1.25ଷ 

Zhou 0.183 1.295 0.270 0.734 0.902 0.959 
GeoNet 0.149 1.060 0.226 0.796 0.935 0.975 

Struct2depth 0.141 1.026 0.215 0.816 0.945 0.979 
PackNet-SfM 0.120 0.892 0.193 0.864 0.954 0.980 
Monodepth2 0.115 0.903 0.193 0.877 0.959 0.981 
FisheyeNet 0.117 0.867 0.190 0.869 0.960 0.982 
SymDistNet 0.109 0.718 0.180 0.896 0.973 0.986 

Shu 0.104 0.729 0.179 0.893 0.965 0.984 
Proposed 0.008 0.694 0.171 0.901 0.978 0.993 

 



Int. J. Advanced Networking and Applications   
Volume: 15 Issue: 06 Pages: 6239– 6245 (2024) ISSN: 0975-0290 
 

6244 

V. CONCLUSION 
This study introduces an innovative deep learning framework 
for obstacle detection and distance estimation in forklift 
operations. The system integrates advanced computer vision 
with monocular imaging, significantly improving safety and 
efficiency during navigation. Experiments demonstrate high 
accuracy in obstacle identification and reliable distance 
calculations across various conditions. Our approach, 
particularly effective for small object detection in complex 
scenes, positions this research as a key advancement towards 
the automation of forklift operations. 

 
The proposed method outperforms existing techniques, 
showing lower errors in distance estimation and higher 
precision and recall in object detection compared to 
YOLOv5. This research highlights the transformative 
potential of deep learning in industrial safety, suggesting that 
as environments evolve, the integration of such systems will 
be increasingly vital for maintaining safe and productive 
workplaces. 
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