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----------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 

This study introduces an innovative Predictive Test Prioritization (PTP) methodology for Continuous Integration 
(CI), utilizing historical test case execution data. To predict the probability of success or failure in new test cases, 
machine learning classifiers like k-nearest Neighbors, Random Forest, Support Vector Machine (SVM), Gradient 
Boosting, and Logistic Regression are applied and trained on historical data. The evaluation process encompasses 
metrics such as F1-score, recall, accuracy, and precision, offering a nuanced understanding of the effectiveness of 
the classifiers. The overarching goal is to optimize test prioritization, potentially enhancing software testing 
efficiency. This research offers valuable insights into continuous integration systems, emphasizing the pivotal role of 
predictive strategies in refining testing practices and contributing to the knowledge base in CI.  
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I. INTRODUCTION 

In the realm of contemporary software development, CI 
stands as a linchpin, orchestrating seamless code 
integration and facilitating the rapid delivery of top-tier 
software. As software projects burgeon, enveloping intricate 
code repositories and accelerating development cycles, the 
significance of an astute test prioritization strategy becomes 
increasingly pronounced. This research probes the nuances 
of test prioritization within modern CI environments, where 
sprawling codebases necessitate a nuanced and 
sophisticated approach. In the dynamic landscape of CI, 
characterized by automated code integration, a resilient 
testing strategy is indispensable. However, the 
impracticality of executing the entire test suite for each 
integration, compounded by the burgeoning size of 
codebases and the demand for expeditious development 
cycles, underscores the strategic imperative of test 
prioritization. This approach empowers development teams 
to focus on critical test cases, optimize resource allocation, 
and expedite the feedback loop. Despite the acknowledged 
significance of test prioritization, conventional methods 
grapple with substantial challenges, often relying on 
historical data or static rules that lack adaptability to 
evolving software projects. Inefficient prioritization poses 
risks such as suboptimal resource utilization, delayed issue 
detection, and diminished overall CI process effectiveness. 
This research tackles the challenge head-on by proposing 
an innovative and predictive approach, departing from 
static heuristics. By advocating for the integration of 

machine learning techniques to forecast the impact of test 
cases based on historical execution data, this approach 
introduces a paradigm shift in test prioritization. By 
championing innovation, this approach empowers 
development teams to make informed decisions about test 
prioritization, streamlining the testing process, and 
ensuring the timely identification of critical issues. Through 
a systematic exploration of these objectives, this paper 
contributes valuable insights to the ongoing discourse on 
optimizing software testing practices in CI environments. 
Emphasizing the intersection of machine learning and test 
prioritization strategies, it underscores the need for adaptive 
and intelligent approaches to address the challenges posed 
by traditional methods.  

This research aims to pave the way for a more efficient and 
dynamic testing landscape in the ever-evolving realm of 
software development. 

II. RELATED WORK  
This review investigates recent machine learning research 
in testing methodologies and continuous integration, 
specifically focusing on predictive test prioritization 
techniques. The present approach automates and enhances 
prioritization, demonstrating efficiency within CI. 
Positioned within the landscape of predictive methods, the 
research emphasizes the critical role of techniques which 
play vital role in optimizing software testing practices, 
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particularly for new test cases based on historical data. Let 
us describe some of the important references. 

In the year 2019, Durelli et al. [1] conducted a systematic 
mapping study to review the state-of-the-art applications of 
Machine Learning (ML) in automating software testing. 
The study involved selecting 48 primary studies and 
categorizing the studies based on study type, testing 
activity, and ML algorithm. Findings revealed that ML 
algorithms were predominantly used for test case 
generation, refinement, and evaluation, as well as in test 
oracle construction and predicting testing-related costs. The 
study concluded by outlining commonly used ML 
algorithms and emphasized the need for more empirical 
studies to better understand the application in automating 
software testing activities. Speiser et al. [2] utilized random 
forest classification, a widely adopted machine learning 
method, to construct prediction models across diverse 
research domains. The study focused on optimizing variable 
selection within the framework to reduce the number of 
variables for enhanced model efficiency. Using 311 online 
classification datasets, the researchers assessed prediction 
error rates, variables, computation times, and the area 
under the receiver operating curve. The comparison covered 
diverse dataset types and methods, highlighting Jiang's 
method and the VSURF R package for optimal performance 
in most cases. For datasets with numerous predictors, 
varSelRF and Boruta were recommended for computational 
efficiency, contributing valuable insights for tailored 
applications in expert and intelligent systems. Zhu et al. [3] 
introduced a data mining-based diabetes prediction model 
that integrated Principal Component Analysis (PCA), K-
means clustering, and logistic regression. The study 
addressed challenges related to the sensitivity of K-means 
clustering to initial positions, impacting subsequent logistic 
regression performance. Utilizing the Pima Indians 
Diabetes (PID) dataset, the model sequentially applied PCA 
to enhance K-means clustering and logistic regression for 
classification. Results demonstrated the model's 
effectiveness, with PCA improving clustering and 
surpassing other studies. Notably, the K-means output 
achieved 25 more correctly classified data points, 
accompanied by a 1.98% increase in logistic regression 
accuracy. Practical validation in healthcare settings 
involved predicting diabetes using electronic health records, 
and further experiments confirmed the model's versatility 
beyond the Pima Indians diabetes dataset. 

In the year 2020, Marijan et al. [4] addressed challenges in 
machine learning software testing, recognizing its 
widespread application. The study emphasized machine 
learning's vulnerability to deception, requiring scrutiny, 
especially in safety-critical contexts. The authors advocated 
software verification and testing as crucial techniques, 
emphasizing error detection, specifically, highlighted 
extensive testing challenges, providing insights into six key 
areas and current approach limitations. The study not only 
identified challenges but also proposed a research agenda to 
advance machine learning testing, contributing to the field's 
state-of-the-art. The insights offered valuable guidance for 
addressing complexities, ensuring correctness, and 

enhancing trustworthiness in machine learning 
applications. Yucalar et al. [5] addressed the challenges of 
manually predicting software defects in large and complex 
projects, proposing automated predictors to identify faulty 
modules efficiently. The paper advocated for improved fault 
predictors, suggesting that combining base predictors 
through ensemble strategies enhances their fault-detection 
performance. The study empirically compared ten ensemble 
predictors to baseline predictors, using 15 software projects 
from the PROMISE repository. Evaluation metrics included 
F-measure (FM) and ROC-AUC Curve, revealing that 
ensemble predictors demonstrated a notable improvement 
in fault detection. The research contributed valuable 
insights to software quality engineering, emphasizing the 
practical application of ensemble predictors to enhance 
software fault prediction in real-world projects. Meçe et al. 
[6] conducted a review on the application of machine 
learning in Test Case prioritization (TCP) for regression 
testing. The study explored recent methodologies, 
techniques, and outcomes in the domain. Machine learning 
techniques were employed in TCP to enhance efficiency, 
with various studies using metrics to measure effectiveness. 
The application of machine learning in TCP demonstrated 
promise, offering insights into optimizing test case 
prioritization in software engineering. Braiek et al. [7] 
explored ML program testing in safety-critical systems, 
integrating software testing principles like code coverage, 
mutation testing, and property-based testing. The 
methodology included a thorough review, outlining 
inherent challenges and presenting techniques from the 
literature. The results compiled existing practices, exposed 
gaps in ML program testing literature, and provided 
insights that guided future research directions, offering 
valuable recommendations for addressing evolving 
demands in ML testing. 

In the year 2021, Khatibsyarbini et al. [8] investigated the 
utilization of ML in TCP to enhance software testing 
performance. The paper underscored the importance of 
TCP in addressing resource and time challenges associated 
with the multiple phases of software testing and focused on 
ML techniques in TCP, the review was based on specific 
research questions and aligned methodology, involving the 
analysis of 110 studies (58 journal articles, 50 conference 
papers, and 2 other articles). The findings highlighted the 
growing trend of ML techniques in TCP, while 
acknowledging the need for improvement. The review 
emphasized the diverse characteristics of ML techniques 
and significant role in TCP for software testing.  

In the year 2022, Goyal and Sinha [9] conducted a review 
on software defect-based prediction using logistic 
regression, addressing challenges in software testing. The 
study explored the development of automated predictors 
analyzing errors through various learning methods. It 
emphasized the need for efficient machine learning-based 
prediction systems. The review compared studies, detailing 
measurement methods, challenges, and system 
effectiveness. Findings indicated the use of 44% of NASA's 
PROMISE data, 68.18% software metrics, and a 16% 
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utilization of Logistic Regression. Gezici and Tarhan [10] 
explored explainable AI for software defect prediction using 
a Gradient Boosting (GB) classifier. The study addressed 
the increasing interest in explainability for stakeholders 
using AI and machine learning software, emphasizing the 
need to comprehend predictions from black-box AI-based 
systems. Applying post-hoc model-agnostic methods—
ELI5, LIME, and SHAP—to an SDP dataset from NASA, 
the research aimed to enhance GB classifier explainability. 
The results demonstrated a consistent and model-agnostic 
approach to quantify explainability, with ELI5, LIME, and 
SHAP providing coherent explanations for the GB model. 
Omri [11] minimized software testing costs through a data-
driven approach, addressing limitations in existing 
techniques. The proposed method, using software quality 
and code churn metrics, demonstrated high accuracy on 
automotive software at Daimler. The thesis introduced a 
test case prioritization model based on code change 
features, test execution history, and component 
development, reducing CI costs by predicting triggering test 
suites. For capturing domain knowledge and tester 
preferences, a test case execution scheduling model with a 
probabilistic graph solved the optimal test budget allocation 
problem online in CI cycles and offline during release 
planning. The theoretical cost model, validated on energy 
management and predictive maintenance applications, 
reported over 95% of test failures while executing only 43% 
of available test cases. Pan et al. [12] systematically 
reviewed ML based TSP for optimizing regression testing 
in the context of CI. The analysis of 29 studies from 2006 
to 2020 addressed five research questions, providing 
insights for categorizing future TSP studies and 
highlighting key aspects in the past ML-based TSP 
landscape. Yaraghi et al. [13] addressed the need for 
efficient regression testing in CI to maintain software 
quality without causing significant delays. They explored 
TCP techniques using ML to handle the dynamic nature of 
CI. The authors conceptualized a data model and defined a 
comprehensive set of features for 25 open-source software 
systems, focusing with sufficient failed builds and 
regression testing durations of at least five minutes. The 
collected dataset was used to answer research questions 
related to data collection time, the effectiveness of ML-
based TCP, the impact of features on effectiveness, the 
decay of ML-based TCP models over time, and the trade-off 
between data collection time and the effectiveness of ML-
based TCP techniques. Da Roza et al. [14] introduced a 
TCP approach for CI environments, using the sliding 
window method with various ML algorithms and tailored 
for CI constraints like test budget and case volatility, the 
TCP method applied Reinforcement Learning (RL) 
principles. The Random Forest (RF) algorithm and a Long 
Short Term Memory (LSTM) network were proposed as RL 
alternatives, emphasizing simplicity and efficiency. The 
study, with three time budgets and eleven systems, 
demonstrated the approach's applicability in prioritization 
time and duration between CI cycles. RF outperformed RL 
in more restrictive budgets, achieving the best NAPFD 
values in approximately 72% of cases, while the LSTM 
network performed well in 55% of cases across all systems 

and budgets. The results highlighted the efficiency and 
effectiveness of the RF algorithm, prompting discussions on 
the implications for the evaluated algorithms' usage. 

In the year 2023, Marijan [15] compared machine learning-
based test case prioritization in continuous integration 
testing, addressing time constraints and data abundance. 
Emphasizing machine learning's potential in handling 
complex testing challenges, especially in continuous 
integration, where large datasets resulted from iterative 
code commits and test runs, the research focused on 
training predictors to identify test cases for expedited 
regression bug detection during code integration. Various 
machine learning approaches were evaluated with real-
world and augmented industrial datasets, considering 
factors like continuous integration time budget and the 
length of test history for training classifiers. Results 
highlighted varied model performance based on test history 
size and time budgets, emphasizing the importance of 
configuring machine learning approaches for optimal test 
prioritization in continuous integration testing. Sánchez-
García et al. [16] explored the application of Gradient 
Boosting (GB) machine learning regression algorithm 
optimized through Differential Evolution (DE) for Software 
Testing Effort Prediction (STEP). The study compared the 
prediction accuracy of GB-DE with GB optimized through 
Particle Swarm Optimization (PSO) and Genetic 
Algorithms (GA). Additionally, the performance of GB-
DE, GB-PSO, and GB-GA was compared to that of 
statistical regression (SR). Seven datasets from an 
international public repository for software projects were 
used for evaluation. The results demonstrated that GB-DE 
outperformed SR in all seven datasets at a 95% confidence 
level, while GB-PSO and GB-GA performed better than SR 
in four and three datasets, respectively. The study 
concluded that GB-DE was suitable for STEP in new or 
enhancement projects developed in either the third or fourth 
programming language generation. Ramesh et al. [17] 
developed the Educational Assistant for Software Testing 
(EAST) framework to enhance students' software testing 
skills using digital teaching methods such as Computer 
Assisted Instruction (CAI). The framework incorporated 
Natural Language Processing (NLP), machine learning, 
and information retrieval techniques. The study introduced 
a novel approach using a Group Search Optimized two-
stage hybrid Support Vector Machine-K-Nearest Neighbor 
(SVM-KNN) classifier to analyze parameters introducing 
bugs in bug reports. The Group Search Optimization (GSO) 
algorithm addressed data sparsity by optimizing parameter 
selection for the hybrid classifier. Two bug report datasets 
were utilized for testing, collected from an open-source 
community and mobile application development companies. 
Experimental results demonstrated that the EAST 
framework could improve outdated teaching methodologies 
based on various performance metrics. Kumar and Saxena 
[18] combined deep neural networks with SVM, RF, and 
XGBoost ensemble models for cross-project software defect 
prediction. Among the compared models, Hybrid Model-3 
stood out, showcasing superior performance metrics and 
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providing valuable insights into effective defect prediction 
strategies across projects. 

Based on above, innovative PTP methodology for CI is 
proposed for utilizing the historical data for execution of 
test cases. The success and failure of new generated test 
cases is evaluated through machine learning classifiers like 
k-Nearest Neighbors, Random Forest, Support Vector 
Machine (SVM), Gradient Boosting, and Logistic 
Regression. ROC-AUC score, F1-score, recall, accuracy, 
and precision are computed for optimization and 
prioritization of the test cases for enhancing the functioning 
of the software testing efficiency. The computed results are 
depicted through tables and graphs.  

III. METHODOLOGY 
This section delves deeper into the systematic methodology 
that CI systems use to effectively use predictive modeling to 
select tests. The proposed methodology is predicated on the 
utilization of past test case execution data to inform more 
advanced techniques. By utilizing historical data analysis in 
predicting test case outcomes, the main goal is to enhance 
the testing procedure. In this regard, figure 1 illustrates the 
graphical representation of the proposed methodology for 
predicting the probability of test cases. 

 
Figure 1: A System Model for PTP Approach 

1.  Dataset 

The research utilizes a dataset representing the historical 
execution details of test cases within CI environment. This 
dataset spans a month and encompasses vital information 
such as test identifiers, test names, durations, prioritization 
scores, execution dates, previous outcomes, verdicts (pass or 
fail), and the corresponding CI cycle. The following figure 
2 shows a visual representation of a representative sample 
of the dataset and gives a summary of the primary features 
and structure. 

 
Figure 2: A Sample of Dataset [19]  

2. Objective 

The present work aims to test case prioritization in CI 
systems by utilizing machine learning classifier models like 
Random Forest, Logistic Regression, Support Vector 
Machine (SVM), Gradient Boosting and K-Nearest 
Neighbors trained on historical test execution data, and 
predict the probability of failure for new test cases, thereby 
providing a data-driven and efficient approach to prioritize 
test cases. It revolutionizes testing strategies, offering a 
reliable framework to inform decision-making in software 
testing processes based on historical insights. 

3. Feature Selection 

To design the predictive model, two vital features have been 
identified: 

 Duration: The time taken for a test case to 
execute; 

 CalcPrio: The prioritization assigned to a test case 
in a CI cycle. 

The selection of these features is predicated on how features 
might affect the results of test cases. 

4. Model Training 

At this crucial stage, various classifiers are trained to 
evaluate for prediction of of the outcomes of tests. Details 
about the selected classifiers and algorithms are provided as 
follows: 

4.1. Random Forest 

Forest is an ensemble learning technique that was first 
presented by Tin Kam Ho in 1995 [20]. It has shown 
promise in a variety of machine-learning applications. With 
its strong ensemble of decision trees, it does exceptionally 
well at identifying intricate correlations between datasets. 
The algorithm learns to respond to various patterns using 
test execution data from the past, generating a sophisticated 
foundation for predicting outcomes for new test cases. 
Because it is ensemble-based, it is robust and reduces 
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overfitting, which enhances test prioritizing in CI 
environments. The algorithm is given below: 

Random Forest Algorithm pseudo-code 
Input: 

 Training dataset with features Xtrain and labels ytrain

. 
 Number of decision trees nestimators, maximum depth 

(maxdepth), and other hyperparameters. 
Process: 

1. Construct a random forest with N random trees 
H={h1,h2,…,hN}. 

2. Repeat until convergence:  
o For each random tree hi in H:  
 Construct a concomitant ensemble H−i. 
 Use H−i to label all unlabeled data, 

estimate labeling confidence. 
 Add data with confidence > θ to newly 

labeled set . 
 Undersample  to satisfy a condition. 
 Update hi by learning a random tree 

using L∪ . 
Output: 

 H, with predictions by majority voting from all 
trees. 

 

4.2.  Logistic Regression 
A comprehensive history of logistic regression is provided 
by Cramer (2002) [21]. However, in the 1830’s and 1840’s, 
Pierre François Verhulst, working under Adolphe Quetelet, 
gave it the name "logistic" because of its first use as a 
population growth model. For binary and multiclass 
classification issues, logistic regression works incredibly 
well. It makes use of past data to identify correlations 
between input features and test case success or failure in the 
context of test prioritizing. The model contributes 
significantly to the predictive method because to its 
interpretability and simplicity. The algorithm is given 
below: 

Logistic Regression Algorithm pseudo-code 
Input: 

 Training dataset with features Xtrain and labels ytrain

. 
 Learning rate (α), regularization term (λ), and 

other hyperparameters. 
Process: 

1. Initialize weights W and bias b. 
2. Repeat until convergence:  

o Compute linear combination z=Xtrain

⋅W+b. 
o Apply sigmoid function 

. 
o Update weights using gradient descent. 

Output: 
 Trained Logistic Regression model with weights 

W and bias b. 
 

4.3.  Support Vector Machine (SVM) 

In 1995, Cortes and Vapnik at AT&T Bell Laboratories 
developed Support Vector Machines (SVM) [22]. SVM's 
adaptability to various data distributions and ability to 
manage complex decision boundaries account for its 
performance. When prioritizing test cases, SVM analyzes 
past test execution data to find patterns that influence a test 
case's success or failure. The algorithm is given below: 
Support Vector Machine (SVM) Algorithm pseudo-code 
Input: 

 Training dataset with features Xtrain and labels 
ytrain. 

 SVM kernel, regularization term (C), and other 
hyperparameters. 

Process: 
1. Using a kernel, transform input features into 

higher-dimensional space. 
2. Optimize:  

o Solve minw,b,ξ1/2∥w∥2+C ξi subject to 
constraints. 

Output: 
 Trained SVM model with parameters w and b. 

 

4.4.  Gradient Boosting 
Gradient boosting, an ensemble technique, uses several 
weak learners, most frequently decision trees, to produce a 
reliable and accurate model. The realization that boosting 
functions as an optimization technique on a cost function, 
as discovered by Leo Breiman [23], served as inspiration 
for it. Because of its ability to consistently correct errors 
from previous models, it is very skilled at seeing minute 
correlations and patterns in data. In the framework of 
continuous integration, test case prioritization establishes 
which test cases to appropriately prioritize based on 
historical execution data. The algorithm is given below: 

Gradient Boosting Algorithm pseudo-code 
Input: 

 Training dataset with features Xtrain and labels ytrain 
 Number of boosting stages (trees), learning rate 

(η), and other hyperparameters. 
Process: 

1. Initialize predictions F0(X)=mean(ytrain). 
2. Repeat for each boosting stage i:  

o Compute residuals ri=ytrain−Fi−1(X). 
o Fit decision tree Ti to residuals. 
o Update predictions Fi(X)=Fi−1(X)+η⋅Ti

(X). 
Output: 

 Trained Gradient Boosting model. 

4.5.  K-Nearest Neighbors (k-NN) 

Evelyn Fix and Joseph Hodges developed the k-
nearest neighbors algorithm (k-NN) in 1951[24]. It is 
a flexible non-parametric supervised learning 
technique for applications including regression and 
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classification. K-NN uses the consensus of the k-
nearest neighbors to assign labels or forecast values, 
based on the idea that neighboring points in feature 
space have similar properties. It locates comparable 
instances in feature space by utilizing the locality 
concept. Test case prioritizing is achieved via k-NN, 
which is particularly effective in scenarios with 
intricate and non-linear decision boundaries. It 
accomplishes this by employing historical test 
execution data for predicting the prioritization of new 
test cases. The algorithm is given below: 

k-Nearest Neighbors (k-NN) Algorithm pseudo-code 
Input: 

 Training dataset with features Xtrain and labels ytrain

. 
 Value of k (number of neighbors) and chosen 

distance metric. 
Process: 

1. For each test point Xtest:  
o Calculate distances to all training points. 
o Identify k-nearest neighbors. 
o Assign class label based on majority 

voting. 
Output: 

 Trained k-NN model. 
 
Each model gains a sophisticated understanding of the 
underlying patterns from past test data due to this 
structured training procedure. As a result, these models 
turn into predictive engines that provide an efficient data-
driven paradigm for test prioritization in CI systems. 
 
5.  Model Evaluation 

A comprehensive evaluation method using a specific testing 
set is applied to the trained the models to get an appropriate 
and comprehensive evaluation. Each model's performance 
is seen systemically via a suite of measures that are 
included in the evaluation as given below: 

 Accuracy: The proportion of correct predictions 
out of total predictions. 

 Classification Report: Provides precision, recall, 
and F1-score metrics for a comprehensive model 
assessment. 

 Confusion Matrix: A detailed breakdown of 
model performance, distinguishing between true 
positives, true negatives, false positives, and false 
negatives. 

 ROC Curve and AUC Score: The Receiver 
Operating Characteristic (ROC) curve visualizes 
the trade-off between sensitivity and specificity, 
with the Area Under the Curve (AUC) quantifying 
the model's ability to distinguish between classes. 

6.  Predictive Testing 

Afterwards, new test cases with varied durations are 
predicted using the learned models. Each case's expected 
outcome and probability of failure are recorded. 

7.  Results Analysis 

To find trends, advantages, and disadvantages that are 
specific to each model, the acquired findings are carefully 
analyzed. Understanding the model's performance is aided 
by visualizations such as confusion matrix. This 
investigation contributes to the understanding of each 
classifier's ability to predict. 

The algorithm depicted below illustrates the sequential 
steps of a predictive modeling process using a variety of 
classifiers. It showcases the algorithmic stages involved in 
diverse classifiers, providing a comprehensive view of the 
precise methodology employed for generating predictions. 

Classifier-Based PTP Algorithm 
1. Load Dataset: 

 dataset = pd.load_csv('dataset.csv') 
2. Data Preprocessing: 

 Features: features=dataset[’Duration’,’CalcPrio’] 
 Target Variable: target=dataset[’Verdict’] 
 Split into Training and Testing sets: Xtrain, Xtest,ytrain,ytest

=train_test_split(features,target,test_size=0.2,random_state=42) 
3. Loop Classifier: 

 For each classifier classifier in ({RandomForest, LogisticRegression, SVM, GradientBoosting, kNN}:  
 Create a pipeline: model=make_pipeline(StandardScaler,classifier) 
 Train and Predict: model.fit(Xtrain,ytrain),ypred=model.predict(Xtest) 

4. Evaluation Loop: 
 For each model:  

 Compute metrics:  
 Accuracy: accuracy=accuracy_score(ytest,ypred) 
 Classification Report: class_report=classification_report(ytest,ypred) 
 Confusion Matrix: conf_matrix=confusion_matrix(ytest,ypred) 

5. Predictive Testing Loop: 
 For each model:  
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 For a new_test_case:  
 Predict Verdict: verdict_pred=model.predict(new_test_case) 
 Predict Failure Probability: failure_prob=model.predict_proba(new_test_case)[:,1] 

6. Results Analysis: 
 Analyze the overall performance metrics of classifiers, including the probability of failure or pass for each 

model. 

The objective of such a broad strategy is to create, evaluate, 
and apply predictive models for test case prioritization. The 
ultimate objective is to improve the efficiency of software 
testing in environments that utilize continuous integration. 
In Continuous Integration (CI) systems, this methodology 
methodically enhances test prioritizing. It entails loading 
and preprocessing data, training and assessing classifiers 
iteratively, and predicting test case Pass and failure 
probabilities using a predictive testing loop. Informed 
decision-making in CI environments is helped by the 
results analysis step, which evaluates overall classifier 
performance.  

IV.  RESULTS AND DISCUSSION 
In this section, a comprehensive analysis of results is 
derived from experimentation involving a diverse array of 
classifiers within the domain of test case prioritization 
within the CI framework. The principal objective is to 
systematically assess the performance of the models, 
delineate the inherent strengths and weaknesses, and 
investigate potential avenues for refining the predictive 
methodology. The experimentation entails the utilization of 
five distinct classifiers: Random Forest, Logistic 
Regression, Support Vector Machine (SVM), Gradient 
Boosting, and k-nearest Neighbors. Each classifier 
undergoes a rigorous training process on a dataset that 
encapsulates the historical records of test case executions 
within a Continuous Integration environment. Crucial 
performance metrics, encompassing accuracy, precision, 
recall, and the F1-score are methodically scrutinized using 
a specifically designated held-out test set for each classifier. 
Furthermore, the models are deployed to prognosticate the 
probabilities of success or failure for novel test cases. This 
approach offers valuable insights into the generalization 
capabilities of the models and provides an understanding of 
the confidence levels associated with each prediction. The 
evaluated parameters are discussed below in brief: 

1.  Accuracy 

Accuracy measures the overall correctness of a 
classification model. It represents the ratio of correctly 
predicted instances to the total number of instances. The 
accuracy is obtained by 

 

In the above, True Positives represent instances correctly 
predicted as positive (typically denoting the minority class, 
e.g., "Fail"), True Negatives denote instances correctly 
predicted as negative (usually representing the majority 
class, e.g., "Pass"), and Total Instances signify the entire 
dataset. Table 1 presents a comparative analysis of various 

classifiers, showcasing their respective accuracy scores. 
Additionally, figure 3 visually depicts the accuracy 
performance of each classifier, providing a graphical 
representation for ease of interpretation. This evaluation 
methodology enables a nuanced understanding of how well 
each classifier performs across different scenarios and 
highlights the distinctions in predictive capabilities. 

Table 1: Classifier Performance Comparison with 
Accuracy Scores 

Classifier Accuracy 
Random Forest 87% 

Logistic Regression 79% 
SVM 79% 

Gradient Boosting 83% 
k-Nearest Neighbors 86% 

Figure 3: Accuracy Comparison of Different Classifiers 

The Random Forest classifier excelled with an 87% 
accuracy, adeptly discerning between Pass and Fail 
instances in historical test data. Logistic Regression and 
SVM showed comparable accuracies of 79%, addressing 
linear and non-linear scenarios. Gradient Boosting 
achieved 83% accuracy, highlighting ensemble learning 
efficacy. Notably, k-Nearest Neighbors reached 86% 
accuracy, capturing intricate patterns. These metrics inform 
predicting new test cases, aiding strategic classifier 
selection for nuanced test prioritization. Identified strengths 
offer a robust foundation for precise real-world decisions in 
prioritizing tests efficiently. 

2. Precision (Class 0 and Class 1) 

Precision assesses the accuracy of positive predictions made 
by the model. It is particularly relevant in scenarios where 
the cost of false positives is high. A high precision indicates 
that when the model predicts a positive instance, it is likely 
correct. It is computed by 
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Where, True Positives denote instances accurately predicted 
as positive, while False Positives signify instances 
erroneously predicted as positive.  

Table 2 and Figure 4 furnish an exhaustive examination of 
precision scores across diverse classifiers, discerning 
between Class 0 and Class 1 predictions. Each precision 
value is computed based on the corresponding true positives 
and false positives for the respective class, thereby 
providing nuanced insights into the models' proficiency in 
making precise positive predictions. 

Table 2: Precision Comparison for Class 0 and Class 1 

Classifier Precision (Class 
0) 

Precision (Class 
1) 

Random Forest 0.89 0.76 
Logistic Regression 0.79 0.00 

SVM 0.79 0.00 
Gradient Boosting 0.82 0.92 

k-Nearest 
Neighbors 0.90 0.69 

0.89 0.79 0.79 0.82

0.76
0 0

0.92

0
0.5

1
1.5

2

Random
Forest

Logistic
Regression

SVM Gradient
Boosting

PRECISION

Precision (Class 0) Precision (Class 1)

Figure 4: Precision Comparison for Class 0 and Class 1 
 

Precision scores elucidate the predictive prowess of 
each classifier in discerning Pass (Class 0) and Fail 
(Class 1) instances within historical test data. 
Specifically, the Random Forest classifier attains a 
precision of 0.89 for Pass and 0.76 for Fail, signifying 
robust predictive capabilities. Logistic Regression 
demonstrates 0.79 precision for Pass but registers 0.00 
for Fail, a performance mirrored by SVM whereas, 
Gradient Boosting performs outstandingly, as 
evidenced by precision evaluations of 0.92 for Fail and 
0.82 for Pass. The k-Nearest Neighbors approach has a 
precision of 0.69 for a fail and 0.90 for a pass. These 
precision metrics assume paramount importance in 
predicting the failure or pass probabilities of new test 
cases, offering strategic insights for selecting models 
tailored to efficient test prioritization. 

3. Recall (Class 0 and Class 1): 

Recall measures the ability of a model to capture all 
positive instances. It is crucial in situations where missing 
positive instances is a significant concern. A high recall 

indicates that the model effectively identifies most of the 
positive instances. It is computed by 

 

Where, True Positives denote instances accurately predicted 
as positive, while False Negatives represent instances 
incorrectly predicted as negative.  

Table 3 provides a comprehensive comparative analysis of 
recall scores among different classifiers, distinguishing 
between Class 0 and Class 1 predictions. The recall values 
shed light on the models' effectiveness in accurately 
capturing positive instances, offering valuable insights into 
their overall performance. Additionally, figure 5 
graphically illustrates their respective recall performances. 

Table 3: Classifier Recall Comparison for Class 0 and 
Class 1 

Classifier Recall (Class 0) Recall (Class 1) 
Random Forest 0.95 0.55 

Logistic Regression 1.00 0.00 
SVM 1.00 0.00 

Gradient Boosting 1.00 0.19 
k-Nearest Neighbors 0.93 0.60 

 
Figure 5: Graphical Representation of Classifier 

Recall Performance 
The presented table outlines recall scores for each classifier, 
revealing their effectiveness in capturing instances within 
Class 0 (Pass) and Class 1 (Fail) based on historical test 
data. Random Forest demonstrates robust recall (0.95) for 
Pass but a relatively lower recall (0.55) for Fail. Logistic 
Regression achieves perfect Pass recall but zero Fail recall, 
mirrored by SVM. Gradient Boosting achieves perfect Pass 
recall but exhibits limited Fail recall (0.19). Conversely, k-
Nearest Neighbors achieves high Pass recall (0.93) and 
moderate Fail recall (0.60). These recall values provide 
nuanced insights into each classifier's sensitivity to 
correctly identifying positive instances within each class 
based on historical data. 

4. F1-Score (Class 0 and Class 1) 
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F1-score is the harmonic mean of precision and recall. It 
provides a balance between precision and recall and is 
especially useful when there is an uneven class distribution. 
It is computed by 

                

Precision and Recall are computed for Class 0 and Class 1. 
Table 4 provides a detailed comparison of F1-Scores across 
various classifiers, delineating the performance concerning 
Class 0 and Class 1 predictions. The F1-Score values 
encapsulate the models' proficiency in achieving a 
harmonious balance between precision and recall, offering 
insights into their effectiveness across diverse class 
distributions. Figure 6 graphically portrays this balance. 

Table 4: F1-Score Comparison for Class 0 and Class 1 

Classifier F1-Score (Class 
0) 

F1-Score (Class 
1) 

Random Forest 0.92 0.63 
Logistic Regression 0.88 0.00 

SVM 0.88 0.00 
Gradient Boosting 0.90 0.32 

k-Nearest 
Neighbors 0.91 0.64 

 
 

 
Figure 6: Graphical Representation of F1-Score 

Balance 
Table 4 provides detailed F1-Score metrics for each 
classifier, offering a nuanced evaluation of precision 
and recall performance for Class 0 (Pass) and Class 1 
(Fail) based on historical test data. Random Forest 
achieves a robust F1-Score of 0.92 for Pass instances, 
demonstrating a harmonious balance between precision 
and recall, while the F1-Score of 0.63 for Fail instances 
reflects a commendable compromise. Logistic 
Regression exhibits a commendable F1-Score of 0.88 
for Pass instances, showcasing a balanced synthesis of 
precision and recall. However, the absence of F1-Score 
for Fail instances (marked as 0.00) underscores 
challenges in achieving a balanced performance for 
actual Fail instances. SVM mirrors Logistic 
Regression's performance with a respectable F1-Score 
of 0.88 for Pass instances but lacks any F1-Score for 
Fail instances, highlighting the struggle to achieve a 

balanced performance for actual Fail instances 
Gradient Boosting demonstrates a high F1-Score of 
0.90 for Pass instances, indicating a balanced 
precision-recall trade-off. However, the F1-Score of 
0.32 for Fail instances suggests challenges in achieving 
a balanced performance for actual Fail instances. k-
Nearest Neighbors exhibits a high F1-Score of 0.91 for 
Pass instances, signifying a balanced performance in 
correctly identifying actual Pass instances. The F1-
Score of 0.64 for Fail instances reflects a balanced 
precision-recall trade-off for actual Fail instances. 
These F1-Score metrics offer a granular assessment of 
each classifier's nuanced performance, essential for 
predicting the probability of failure or pass for new test 
cases based on historical data. 
 

5. Confusion Matrix 
 

A confusion matrix is a table that provides a detailed 
breakdown of the model's predictions. It shows the counts 
of true positives, true negatives, false positives, and false 
negatives. The elements of the matrix represent different 
outcomes based on the actual and predicted class labels. 
 

 
 

The confusion matrix for the Random Forest model 
illustrates the following outcomes: True Negatives (TN) - 
9630, False Positives (FP) - 477, False Negatives (FN) - 
1222, True Positives (TP) - 1476. This indicates that the 
model accurately identified 9630 instances as "Pass" (class 
0) and 1476 instances as "Fail" (class 1). However, it 
mistakenly classified 477 instances as "Fail" when they 
were "Pass" and 1222 instances as "Pass" when they were 
"Fail." 

The confusion matrix can be visually represented using a 
heatmap, providing a clearer illustration in the figure 7. 

 

Figure 7: Confusion Matrix of Random Forest 

In both Logistic Regression and Support Vector Machines 
(SVM), the confusion matrix reveals uniform values: True 
Negatives (TN) amounting to 10,107, False Positives (FP) 
registering at 0, False Negatives (FN) totaling 2,698, and 
True Positives (TP) standing at 0. In the context of 
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Gradient Boosting, the confusion matrix displays TN: 
10,063, FP: 44, FN: 2,175, and TP: 523. For the k-Nearest 
Neighbors (k-NN) algorithm, the confusion matrix records 

TN: 9,375, FP: 732, FN: 1,076, and TP: 1,622. Figure 8 
visually illustrates the performance metrics in a heatmap 
encompassing all the models. 

 

 

 

Figure 8: Metrics Heatmap for Logistic Regression, SVM, Gradient Boosting, and k-NN Models 

V. CONCLUSIONS 

This present study explores optimizing test prioritization in 
CI environments using machine learning classifiers. The 
Random Forest classifier outperformed others with an 87% 
accuracy, excelling in distinguishing pass and fail 
outcomes. Logistic Regression and SVM faced challenges 
with an imbalanced dataset. Including confusion matrices, 
provided nuanced insights. For instance, the Random 
Forest model exhibited 9630 true negatives, 477 false 
positives, 1222 false negatives, and 1476 true positives. 
While contributing to intelligent test prioritization in CI, 
future work should focus on refining models, exploring 
additional features, and addressing dataset imbalances for 
enhanced CI pipeline efficiency. The predictive approach 
showcases automation potential, optimizing resource 
utilization and elevating software quality. As software 
development evolves, leveraging machine learning in test 
prioritization signifies a progressive shift. Ongoing 
research can further refine models and adapt approaches to 
diverse CI scenarios, shaping the future of software testing. 
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