
Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6218

 Machine Learning for Test Case Prioritization
in Continuous Integration: A Comprehensive

Analysis
Hemant Kumar

Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
Email: hemant20192@gmail.com

Vipin Saxena
Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India

Email: profvipinsaxena@gmail.com

--ABSTRACT--

This study introduces an innovative Predictive Test Prioritization (PTP) methodology for Continuous Integration
(CI), utilizing historical test case execution data. To predict the probability of success or failure in new test cases,
machine learning classifiers like k-nearest Neighbors, Random Forest, Support Vector Machine (SVM), Gradient
Boosting, and Logistic Regression are applied and trained on historical data. The evaluation process encompasses
metrics such as F1-score, recall, accuracy, and precision, offering a nuanced understanding of the effectiveness of
the classifiers. The overarching goal is to optimize test prioritization, potentially enhancing software testing
efficiency. This research offers valuable insights into continuous integration systems, emphasizing the pivotal role of
predictive strategies in refining testing practices and contributing to the knowledge base in CI.

Keywords – Continuous Integration, Machine Learning, Predictive Approach, Software Testing, Test Prioritization.
--
Date of Submission: April 03, 2024 Date of Acceptance: April 30, 2024
--

I. INTRODUCTION

In the realm of contemporary software development, CI
stands as a linchpin, orchestrating seamless code
integration and facilitating the rapid delivery of top-tier
software. As software projects burgeon, enveloping intricate
code repositories and accelerating development cycles, the
significance of an astute test prioritization strategy becomes
increasingly pronounced. This research probes the nuances
of test prioritization within modern CI environments, where
sprawling codebases necessitate a nuanced and
sophisticated approach. In the dynamic landscape of CI,
characterized by automated code integration, a resilient
testing strategy is indispensable. However, the
impracticality of executing the entire test suite for each
integration, compounded by the burgeoning size of
codebases and the demand for expeditious development
cycles, underscores the strategic imperative of test
prioritization. This approach empowers development teams
to focus on critical test cases, optimize resource allocation,
and expedite the feedback loop. Despite the acknowledged
significance of test prioritization, conventional methods
grapple with substantial challenges, often relying on
historical data or static rules that lack adaptability to
evolving software projects. Inefficient prioritization poses
risks such as suboptimal resource utilization, delayed issue
detection, and diminished overall CI process effectiveness.
This research tackles the challenge head-on by proposing
an innovative and predictive approach, departing from
static heuristics. By advocating for the integration of

machine learning techniques to forecast the impact of test
cases based on historical execution data, this approach
introduces a paradigm shift in test prioritization. By
championing innovation, this approach empowers
development teams to make informed decisions about test
prioritization, streamlining the testing process, and
ensuring the timely identification of critical issues. Through
a systematic exploration of these objectives, this paper
contributes valuable insights to the ongoing discourse on
optimizing software testing practices in CI environments.
Emphasizing the intersection of machine learning and test
prioritization strategies, it underscores the need for adaptive
and intelligent approaches to address the challenges posed
by traditional methods.

This research aims to pave the way for a more efficient and
dynamic testing landscape in the ever-evolving realm of
software development.

II. RELATED WORK
This review investigates recent machine learning research
in testing methodologies and continuous integration,
specifically focusing on predictive test prioritization
techniques. The present approach automates and enhances
prioritization, demonstrating efficiency within CI.
Positioned within the landscape of predictive methods, the
research emphasizes the critical role of techniques which
play vital role in optimizing software testing practices,

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6219

particularly for new test cases based on historical data. Let
us describe some of the important references.

In the year 2019, Durelli et al. [1] conducted a systematic
mapping study to review the state-of-the-art applications of
Machine Learning (ML) in automating software testing.
The study involved selecting 48 primary studies and
categorizing the studies based on study type, testing
activity, and ML algorithm. Findings revealed that ML
algorithms were predominantly used for test case
generation, refinement, and evaluation, as well as in test
oracle construction and predicting testing-related costs. The
study concluded by outlining commonly used ML
algorithms and emphasized the need for more empirical
studies to better understand the application in automating
software testing activities. Speiser et al. [2] utilized random
forest classification, a widely adopted machine learning
method, to construct prediction models across diverse
research domains. The study focused on optimizing variable
selection within the framework to reduce the number of
variables for enhanced model efficiency. Using 311 online
classification datasets, the researchers assessed prediction
error rates, variables, computation times, and the area
under the receiver operating curve. The comparison covered
diverse dataset types and methods, highlighting Jiang's
method and the VSURF R package for optimal performance
in most cases. For datasets with numerous predictors,
varSelRF and Boruta were recommended for computational
efficiency, contributing valuable insights for tailored
applications in expert and intelligent systems. Zhu et al. [3]
introduced a data mining-based diabetes prediction model
that integrated Principal Component Analysis (PCA), K-
means clustering, and logistic regression. The study
addressed challenges related to the sensitivity of K-means
clustering to initial positions, impacting subsequent logistic
regression performance. Utilizing the Pima Indians
Diabetes (PID) dataset, the model sequentially applied PCA
to enhance K-means clustering and logistic regression for
classification. Results demonstrated the model's
effectiveness, with PCA improving clustering and
surpassing other studies. Notably, the K-means output
achieved 25 more correctly classified data points,
accompanied by a 1.98% increase in logistic regression
accuracy. Practical validation in healthcare settings
involved predicting diabetes using electronic health records,
and further experiments confirmed the model's versatility
beyond the Pima Indians diabetes dataset.

In the year 2020, Marijan et al. [4] addressed challenges in
machine learning software testing, recognizing its
widespread application. The study emphasized machine
learning's vulnerability to deception, requiring scrutiny,
especially in safety-critical contexts. The authors advocated
software verification and testing as crucial techniques,
emphasizing error detection, specifically, highlighted
extensive testing challenges, providing insights into six key
areas and current approach limitations. The study not only
identified challenges but also proposed a research agenda to
advance machine learning testing, contributing to the field's
state-of-the-art. The insights offered valuable guidance for
addressing complexities, ensuring correctness, and

enhancing trustworthiness in machine learning
applications. Yucalar et al. [5] addressed the challenges of
manually predicting software defects in large and complex
projects, proposing automated predictors to identify faulty
modules efficiently. The paper advocated for improved fault
predictors, suggesting that combining base predictors
through ensemble strategies enhances their fault-detection
performance. The study empirically compared ten ensemble
predictors to baseline predictors, using 15 software projects
from the PROMISE repository. Evaluation metrics included
F-measure (FM) and ROC-AUC Curve, revealing that
ensemble predictors demonstrated a notable improvement
in fault detection. The research contributed valuable
insights to software quality engineering, emphasizing the
practical application of ensemble predictors to enhance
software fault prediction in real-world projects. Meçe et al.
[6] conducted a review on the application of machine
learning in Test Case prioritization (TCP) for regression
testing. The study explored recent methodologies,
techniques, and outcomes in the domain. Machine learning
techniques were employed in TCP to enhance efficiency,
with various studies using metrics to measure effectiveness.
The application of machine learning in TCP demonstrated
promise, offering insights into optimizing test case
prioritization in software engineering. Braiek et al. [7]
explored ML program testing in safety-critical systems,
integrating software testing principles like code coverage,
mutation testing, and property-based testing. The
methodology included a thorough review, outlining
inherent challenges and presenting techniques from the
literature. The results compiled existing practices, exposed
gaps in ML program testing literature, and provided
insights that guided future research directions, offering
valuable recommendations for addressing evolving
demands in ML testing.

In the year 2021, Khatibsyarbini et al. [8] investigated the
utilization of ML in TCP to enhance software testing
performance. The paper underscored the importance of
TCP in addressing resource and time challenges associated
with the multiple phases of software testing and focused on
ML techniques in TCP, the review was based on specific
research questions and aligned methodology, involving the
analysis of 110 studies (58 journal articles, 50 conference
papers, and 2 other articles). The findings highlighted the
growing trend of ML techniques in TCP, while
acknowledging the need for improvement. The review
emphasized the diverse characteristics of ML techniques
and significant role in TCP for software testing.

In the year 2022, Goyal and Sinha [9] conducted a review
on software defect-based prediction using logistic
regression, addressing challenges in software testing. The
study explored the development of automated predictors
analyzing errors through various learning methods. It
emphasized the need for efficient machine learning-based
prediction systems. The review compared studies, detailing
measurement methods, challenges, and system
effectiveness. Findings indicated the use of 44% of NASA's
PROMISE data, 68.18% software metrics, and a 16%

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6220

utilization of Logistic Regression. Gezici and Tarhan [10]
explored explainable AI for software defect prediction using
a Gradient Boosting (GB) classifier. The study addressed
the increasing interest in explainability for stakeholders
using AI and machine learning software, emphasizing the
need to comprehend predictions from black-box AI-based
systems. Applying post-hoc model-agnostic methods—
ELI5, LIME, and SHAP—to an SDP dataset from NASA,
the research aimed to enhance GB classifier explainability.
The results demonstrated a consistent and model-agnostic
approach to quantify explainability, with ELI5, LIME, and
SHAP providing coherent explanations for the GB model.
Omri [11] minimized software testing costs through a data-
driven approach, addressing limitations in existing
techniques. The proposed method, using software quality
and code churn metrics, demonstrated high accuracy on
automotive software at Daimler. The thesis introduced a
test case prioritization model based on code change
features, test execution history, and component
development, reducing CI costs by predicting triggering test
suites. For capturing domain knowledge and tester
preferences, a test case execution scheduling model with a
probabilistic graph solved the optimal test budget allocation
problem online in CI cycles and offline during release
planning. The theoretical cost model, validated on energy
management and predictive maintenance applications,
reported over 95% of test failures while executing only 43%
of available test cases. Pan et al. [12] systematically
reviewed ML based TSP for optimizing regression testing
in the context of CI. The analysis of 29 studies from 2006
to 2020 addressed five research questions, providing
insights for categorizing future TSP studies and
highlighting key aspects in the past ML-based TSP
landscape. Yaraghi et al. [13] addressed the need for
efficient regression testing in CI to maintain software
quality without causing significant delays. They explored
TCP techniques using ML to handle the dynamic nature of
CI. The authors conceptualized a data model and defined a
comprehensive set of features for 25 open-source software
systems, focusing with sufficient failed builds and
regression testing durations of at least five minutes. The
collected dataset was used to answer research questions
related to data collection time, the effectiveness of ML-
based TCP, the impact of features on effectiveness, the
decay of ML-based TCP models over time, and the trade-off
between data collection time and the effectiveness of ML-
based TCP techniques. Da Roza et al. [14] introduced a
TCP approach for CI environments, using the sliding
window method with various ML algorithms and tailored
for CI constraints like test budget and case volatility, the
TCP method applied Reinforcement Learning (RL)
principles. The Random Forest (RF) algorithm and a Long
Short Term Memory (LSTM) network were proposed as RL
alternatives, emphasizing simplicity and efficiency. The
study, with three time budgets and eleven systems,
demonstrated the approach's applicability in prioritization
time and duration between CI cycles. RF outperformed RL
in more restrictive budgets, achieving the best NAPFD
values in approximately 72% of cases, while the LSTM
network performed well in 55% of cases across all systems

and budgets. The results highlighted the efficiency and
effectiveness of the RF algorithm, prompting discussions on
the implications for the evaluated algorithms' usage.

In the year 2023, Marijan [15] compared machine learning-
based test case prioritization in continuous integration
testing, addressing time constraints and data abundance.
Emphasizing machine learning's potential in handling
complex testing challenges, especially in continuous
integration, where large datasets resulted from iterative
code commits and test runs, the research focused on
training predictors to identify test cases for expedited
regression bug detection during code integration. Various
machine learning approaches were evaluated with real-
world and augmented industrial datasets, considering
factors like continuous integration time budget and the
length of test history for training classifiers. Results
highlighted varied model performance based on test history
size and time budgets, emphasizing the importance of
configuring machine learning approaches for optimal test
prioritization in continuous integration testing. Sánchez-
García et al. [16] explored the application of Gradient
Boosting (GB) machine learning regression algorithm
optimized through Differential Evolution (DE) for Software
Testing Effort Prediction (STEP). The study compared the
prediction accuracy of GB-DE with GB optimized through
Particle Swarm Optimization (PSO) and Genetic
Algorithms (GA). Additionally, the performance of GB-
DE, GB-PSO, and GB-GA was compared to that of
statistical regression (SR). Seven datasets from an
international public repository for software projects were
used for evaluation. The results demonstrated that GB-DE
outperformed SR in all seven datasets at a 95% confidence
level, while GB-PSO and GB-GA performed better than SR
in four and three datasets, respectively. The study
concluded that GB-DE was suitable for STEP in new or
enhancement projects developed in either the third or fourth
programming language generation. Ramesh et al. [17]
developed the Educational Assistant for Software Testing
(EAST) framework to enhance students' software testing
skills using digital teaching methods such as Computer
Assisted Instruction (CAI). The framework incorporated
Natural Language Processing (NLP), machine learning,
and information retrieval techniques. The study introduced
a novel approach using a Group Search Optimized two-
stage hybrid Support Vector Machine-K-Nearest Neighbor
(SVM-KNN) classifier to analyze parameters introducing
bugs in bug reports. The Group Search Optimization (GSO)
algorithm addressed data sparsity by optimizing parameter
selection for the hybrid classifier. Two bug report datasets
were utilized for testing, collected from an open-source
community and mobile application development companies.
Experimental results demonstrated that the EAST
framework could improve outdated teaching methodologies
based on various performance metrics. Kumar and Saxena
[18] combined deep neural networks with SVM, RF, and
XGBoost ensemble models for cross-project software defect
prediction. Among the compared models, Hybrid Model-3
stood out, showcasing superior performance metrics and

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6221

providing valuable insights into effective defect prediction
strategies across projects.

Based on above, innovative PTP methodology for CI is
proposed for utilizing the historical data for execution of
test cases. The success and failure of new generated test
cases is evaluated through machine learning classifiers like
k-Nearest Neighbors, Random Forest, Support Vector
Machine (SVM), Gradient Boosting, and Logistic
Regression. ROC-AUC score, F1-score, recall, accuracy,
and precision are computed for optimization and
prioritization of the test cases for enhancing the functioning
of the software testing efficiency. The computed results are
depicted through tables and graphs.

III. METHODOLOGY
This section delves deeper into the systematic methodology
that CI systems use to effectively use predictive modeling to
select tests. The proposed methodology is predicated on the
utilization of past test case execution data to inform more
advanced techniques. By utilizing historical data analysis in
predicting test case outcomes, the main goal is to enhance
the testing procedure. In this regard, figure 1 illustrates the
graphical representation of the proposed methodology for
predicting the probability of test cases.

Figure 1: A System Model for PTP Approach

1. Dataset

The research utilizes a dataset representing the historical
execution details of test cases within CI environment. This
dataset spans a month and encompasses vital information
such as test identifiers, test names, durations, prioritization
scores, execution dates, previous outcomes, verdicts (pass or
fail), and the corresponding CI cycle. The following figure
2 shows a visual representation of a representative sample
of the dataset and gives a summary of the primary features
and structure.

Figure 2: A Sample of Dataset [19]

2. Objective

The present work aims to test case prioritization in CI
systems by utilizing machine learning classifier models like
Random Forest, Logistic Regression, Support Vector
Machine (SVM), Gradient Boosting and K-Nearest
Neighbors trained on historical test execution data, and
predict the probability of failure for new test cases, thereby
providing a data-driven and efficient approach to prioritize
test cases. It revolutionizes testing strategies, offering a
reliable framework to inform decision-making in software
testing processes based on historical insights.

3. Feature Selection

To design the predictive model, two vital features have been
identified:

 Duration: The time taken for a test case to
execute;

 CalcPrio: The prioritization assigned to a test case
in a CI cycle.

The selection of these features is predicated on how features
might affect the results of test cases.

4. Model Training

At this crucial stage, various classifiers are trained to
evaluate for prediction of of the outcomes of tests. Details
about the selected classifiers and algorithms are provided as
follows:

4.1. Random Forest

Forest is an ensemble learning technique that was first
presented by Tin Kam Ho in 1995 [20]. It has shown
promise in a variety of machine-learning applications. With
its strong ensemble of decision trees, it does exceptionally
well at identifying intricate correlations between datasets.
The algorithm learns to respond to various patterns using
test execution data from the past, generating a sophisticated
foundation for predicting outcomes for new test cases.
Because it is ensemble-based, it is robust and reduces

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6222

overfitting, which enhances test prioritizing in CI
environments. The algorithm is given below:

Random Forest Algorithm pseudo-code
Input:

 Training dataset with features Xtrain and labels ytrain

.
 Number of decision trees nestimators, maximum depth

(maxdepth), and other hyperparameters.
Process:

1. Construct a random forest with N random trees
H={h1,h2,…,hN}.

2. Repeat until convergence:
o For each random tree hi in H:
 Construct a concomitant ensemble H−i.
 Use H−i to label all unlabeled data,

estimate labeling confidence.
 Add data with confidence > θ to newly

labeled set .
 Undersample to satisfy a condition.
 Update hi by learning a random tree

using L∪ .
Output:

 H, with predictions by majority voting from all
trees.

4.2. Logistic Regression
A comprehensive history of logistic regression is provided
by Cramer (2002) [21]. However, in the 1830’s and 1840’s,
Pierre François Verhulst, working under Adolphe Quetelet,
gave it the name "logistic" because of its first use as a
population growth model. For binary and multiclass
classification issues, logistic regression works incredibly
well. It makes use of past data to identify correlations
between input features and test case success or failure in the
context of test prioritizing. The model contributes
significantly to the predictive method because to its
interpretability and simplicity. The algorithm is given
below:

Logistic Regression Algorithm pseudo-code
Input:

 Training dataset with features Xtrain and labels ytrain

.
 Learning rate (α), regularization term (λ), and

other hyperparameters.
Process:

1. Initialize weights W and bias b.
2. Repeat until convergence:

o Compute linear combination z=Xtrain

⋅W+b.
o Apply sigmoid function

.
o Update weights using gradient descent.

Output:
 Trained Logistic Regression model with weights

W and bias b.

4.3. Support Vector Machine (SVM)

In 1995, Cortes and Vapnik at AT&T Bell Laboratories
developed Support Vector Machines (SVM) [22]. SVM's
adaptability to various data distributions and ability to
manage complex decision boundaries account for its
performance. When prioritizing test cases, SVM analyzes
past test execution data to find patterns that influence a test
case's success or failure. The algorithm is given below:
Support Vector Machine (SVM) Algorithm pseudo-code
Input:

 Training dataset with features Xtrain and labels
ytrain.

 SVM kernel, regularization term (C), and other
hyperparameters.

Process:
1. Using a kernel, transform input features into

higher-dimensional space.
2. Optimize:

o Solve minw,b,ξ1/2∥w∥2+C ξi subject to
constraints.

Output:
 Trained SVM model with parameters w and b.

4.4. Gradient Boosting
Gradient boosting, an ensemble technique, uses several
weak learners, most frequently decision trees, to produce a
reliable and accurate model. The realization that boosting
functions as an optimization technique on a cost function,
as discovered by Leo Breiman [23], served as inspiration
for it. Because of its ability to consistently correct errors
from previous models, it is very skilled at seeing minute
correlations and patterns in data. In the framework of
continuous integration, test case prioritization establishes
which test cases to appropriately prioritize based on
historical execution data. The algorithm is given below:

Gradient Boosting Algorithm pseudo-code
Input:

 Training dataset with features Xtrain and labels ytrain
 Number of boosting stages (trees), learning rate

(η), and other hyperparameters.
Process:

1. Initialize predictions F0(X)=mean(ytrain).
2. Repeat for each boosting stage i:

o Compute residuals ri=ytrain−Fi−1(X).
o Fit decision tree Ti to residuals.
o Update predictions Fi(X)=Fi−1(X)+η⋅Ti

(X).
Output:

 Trained Gradient Boosting model.

4.5. K-Nearest Neighbors (k-NN)

Evelyn Fix and Joseph Hodges developed the k-
nearest neighbors algorithm (k-NN) in 1951[24]. It is
a flexible non-parametric supervised learning
technique for applications including regression and

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6223

classification. K-NN uses the consensus of the k-
nearest neighbors to assign labels or forecast values,
based on the idea that neighboring points in feature
space have similar properties. It locates comparable
instances in feature space by utilizing the locality
concept. Test case prioritizing is achieved via k-NN,
which is particularly effective in scenarios with
intricate and non-linear decision boundaries. It
accomplishes this by employing historical test
execution data for predicting the prioritization of new
test cases. The algorithm is given below:

k-Nearest Neighbors (k-NN) Algorithm pseudo-code
Input:

 Training dataset with features Xtrain and labels ytrain

.
 Value of k (number of neighbors) and chosen

distance metric.
Process:

1. For each test point Xtest:
o Calculate distances to all training points.
o Identify k-nearest neighbors.
o Assign class label based on majority

voting.
Output:

 Trained k-NN model.

Each model gains a sophisticated understanding of the
underlying patterns from past test data due to this
structured training procedure. As a result, these models
turn into predictive engines that provide an efficient data-
driven paradigm for test prioritization in CI systems.

5. Model Evaluation

A comprehensive evaluation method using a specific testing
set is applied to the trained the models to get an appropriate
and comprehensive evaluation. Each model's performance
is seen systemically via a suite of measures that are
included in the evaluation as given below:

 Accuracy: The proportion of correct predictions
out of total predictions.

 Classification Report: Provides precision, recall,
and F1-score metrics for a comprehensive model
assessment.

 Confusion Matrix: A detailed breakdown of
model performance, distinguishing between true
positives, true negatives, false positives, and false
negatives.

 ROC Curve and AUC Score: The Receiver
Operating Characteristic (ROC) curve visualizes
the trade-off between sensitivity and specificity,
with the Area Under the Curve (AUC) quantifying
the model's ability to distinguish between classes.

6. Predictive Testing

Afterwards, new test cases with varied durations are
predicted using the learned models. Each case's expected
outcome and probability of failure are recorded.

7. Results Analysis

To find trends, advantages, and disadvantages that are
specific to each model, the acquired findings are carefully
analyzed. Understanding the model's performance is aided
by visualizations such as confusion matrix. This
investigation contributes to the understanding of each
classifier's ability to predict.

The algorithm depicted below illustrates the sequential
steps of a predictive modeling process using a variety of
classifiers. It showcases the algorithmic stages involved in
diverse classifiers, providing a comprehensive view of the
precise methodology employed for generating predictions.

Classifier-Based PTP Algorithm
1. Load Dataset:

 dataset = pd.load_csv('dataset.csv')
2. Data Preprocessing:

 Features: features=dataset[’Duration’,’CalcPrio’]
 Target Variable: target=dataset[’Verdict’]
 Split into Training and Testing sets: Xtrain, Xtest,ytrain,ytest

=train_test_split(features,target,test_size=0.2,random_state=42)
3. Loop Classifier:

 For each classifier classifier in ({RandomForest, LogisticRegression, SVM, GradientBoosting, kNN}:
 Create a pipeline: model=make_pipeline(StandardScaler,classifier)
 Train and Predict: model.fit(Xtrain,ytrain),ypred=model.predict(Xtest)

4. Evaluation Loop:
 For each model:

 Compute metrics:
 Accuracy: accuracy=accuracy_score(ytest,ypred)
 Classification Report: class_report=classification_report(ytest,ypred)
 Confusion Matrix: conf_matrix=confusion_matrix(ytest,ypred)

5. Predictive Testing Loop:
 For each model:

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6224

 For a new_test_case:
 Predict Verdict: verdict_pred=model.predict(new_test_case)
 Predict Failure Probability: failure_prob=model.predict_proba(new_test_case)[:,1]

6. Results Analysis:
 Analyze the overall performance metrics of classifiers, including the probability of failure or pass for each

model.

The objective of such a broad strategy is to create, evaluate,
and apply predictive models for test case prioritization. The
ultimate objective is to improve the efficiency of software
testing in environments that utilize continuous integration.
In Continuous Integration (CI) systems, this methodology
methodically enhances test prioritizing. It entails loading
and preprocessing data, training and assessing classifiers
iteratively, and predicting test case Pass and failure
probabilities using a predictive testing loop. Informed
decision-making in CI environments is helped by the
results analysis step, which evaluates overall classifier
performance.

IV. RESULTS AND DISCUSSION
In this section, a comprehensive analysis of results is
derived from experimentation involving a diverse array of
classifiers within the domain of test case prioritization
within the CI framework. The principal objective is to
systematically assess the performance of the models,
delineate the inherent strengths and weaknesses, and
investigate potential avenues for refining the predictive
methodology. The experimentation entails the utilization of
five distinct classifiers: Random Forest, Logistic
Regression, Support Vector Machine (SVM), Gradient
Boosting, and k-nearest Neighbors. Each classifier
undergoes a rigorous training process on a dataset that
encapsulates the historical records of test case executions
within a Continuous Integration environment. Crucial
performance metrics, encompassing accuracy, precision,
recall, and the F1-score are methodically scrutinized using
a specifically designated held-out test set for each classifier.
Furthermore, the models are deployed to prognosticate the
probabilities of success or failure for novel test cases. This
approach offers valuable insights into the generalization
capabilities of the models and provides an understanding of
the confidence levels associated with each prediction. The
evaluated parameters are discussed below in brief:

1. Accuracy

Accuracy measures the overall correctness of a
classification model. It represents the ratio of correctly
predicted instances to the total number of instances. The
accuracy is obtained by

In the above, True Positives represent instances correctly
predicted as positive (typically denoting the minority class,
e.g., "Fail"), True Negatives denote instances correctly
predicted as negative (usually representing the majority
class, e.g., "Pass"), and Total Instances signify the entire
dataset. Table 1 presents a comparative analysis of various

classifiers, showcasing their respective accuracy scores.
Additionally, figure 3 visually depicts the accuracy
performance of each classifier, providing a graphical
representation for ease of interpretation. This evaluation
methodology enables a nuanced understanding of how well
each classifier performs across different scenarios and
highlights the distinctions in predictive capabilities.

Table 1: Classifier Performance Comparison with
Accuracy Scores

Classifier Accuracy
Random Forest 87%

Logistic Regression 79%
SVM 79%

Gradient Boosting 83%
k-Nearest Neighbors 86%

Figure 3: Accuracy Comparison of Different Classifiers

The Random Forest classifier excelled with an 87%
accuracy, adeptly discerning between Pass and Fail
instances in historical test data. Logistic Regression and
SVM showed comparable accuracies of 79%, addressing
linear and non-linear scenarios. Gradient Boosting
achieved 83% accuracy, highlighting ensemble learning
efficacy. Notably, k-Nearest Neighbors reached 86%
accuracy, capturing intricate patterns. These metrics inform
predicting new test cases, aiding strategic classifier
selection for nuanced test prioritization. Identified strengths
offer a robust foundation for precise real-world decisions in
prioritizing tests efficiently.

2. Precision (Class 0 and Class 1)

Precision assesses the accuracy of positive predictions made
by the model. It is particularly relevant in scenarios where
the cost of false positives is high. A high precision indicates
that when the model predicts a positive instance, it is likely
correct. It is computed by

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6225

Where, True Positives denote instances accurately predicted
as positive, while False Positives signify instances
erroneously predicted as positive.

Table 2 and Figure 4 furnish an exhaustive examination of
precision scores across diverse classifiers, discerning
between Class 0 and Class 1 predictions. Each precision
value is computed based on the corresponding true positives
and false positives for the respective class, thereby
providing nuanced insights into the models' proficiency in
making precise positive predictions.

Table 2: Precision Comparison for Class 0 and Class 1

Classifier Precision (Class
0)

Precision (Class
1)

Random Forest 0.89 0.76
Logistic Regression 0.79 0.00

SVM 0.79 0.00
Gradient Boosting 0.82 0.92

k-Nearest
Neighbors 0.90 0.69

0.89 0.79 0.79 0.82

0.76
0 0

0.92

0
0.5

1
1.5

2

Random
Forest

Logistic
Regression

SVM Gradient
Boosting

PRECISION

Precision (Class 0) Precision (Class 1)

Figure 4: Precision Comparison for Class 0 and Class 1

Precision scores elucidate the predictive prowess of
each classifier in discerning Pass (Class 0) and Fail
(Class 1) instances within historical test data.
Specifically, the Random Forest classifier attains a
precision of 0.89 for Pass and 0.76 for Fail, signifying
robust predictive capabilities. Logistic Regression
demonstrates 0.79 precision for Pass but registers 0.00
for Fail, a performance mirrored by SVM whereas,
Gradient Boosting performs outstandingly, as
evidenced by precision evaluations of 0.92 for Fail and
0.82 for Pass. The k-Nearest Neighbors approach has a
precision of 0.69 for a fail and 0.90 for a pass. These
precision metrics assume paramount importance in
predicting the failure or pass probabilities of new test
cases, offering strategic insights for selecting models
tailored to efficient test prioritization.

3. Recall (Class 0 and Class 1):

Recall measures the ability of a model to capture all
positive instances. It is crucial in situations where missing
positive instances is a significant concern. A high recall

indicates that the model effectively identifies most of the
positive instances. It is computed by

Where, True Positives denote instances accurately predicted
as positive, while False Negatives represent instances
incorrectly predicted as negative.

Table 3 provides a comprehensive comparative analysis of
recall scores among different classifiers, distinguishing
between Class 0 and Class 1 predictions. The recall values
shed light on the models' effectiveness in accurately
capturing positive instances, offering valuable insights into
their overall performance. Additionally, figure 5
graphically illustrates their respective recall performances.

Table 3: Classifier Recall Comparison for Class 0 and
Class 1

Classifier Recall (Class 0) Recall (Class 1)
Random Forest 0.95 0.55

Logistic Regression 1.00 0.00
SVM 1.00 0.00

Gradient Boosting 1.00 0.19
k-Nearest Neighbors 0.93 0.60

Figure 5: Graphical Representation of Classifier

Recall Performance
The presented table outlines recall scores for each classifier,
revealing their effectiveness in capturing instances within
Class 0 (Pass) and Class 1 (Fail) based on historical test
data. Random Forest demonstrates robust recall (0.95) for
Pass but a relatively lower recall (0.55) for Fail. Logistic
Regression achieves perfect Pass recall but zero Fail recall,
mirrored by SVM. Gradient Boosting achieves perfect Pass
recall but exhibits limited Fail recall (0.19). Conversely, k-
Nearest Neighbors achieves high Pass recall (0.93) and
moderate Fail recall (0.60). These recall values provide
nuanced insights into each classifier's sensitivity to
correctly identifying positive instances within each class
based on historical data.

4. F1-Score (Class 0 and Class 1)

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6226

F1-score is the harmonic mean of precision and recall. It
provides a balance between precision and recall and is
especially useful when there is an uneven class distribution.
It is computed by

Precision and Recall are computed for Class 0 and Class 1.
Table 4 provides a detailed comparison of F1-Scores across
various classifiers, delineating the performance concerning
Class 0 and Class 1 predictions. The F1-Score values
encapsulate the models' proficiency in achieving a
harmonious balance between precision and recall, offering
insights into their effectiveness across diverse class
distributions. Figure 6 graphically portrays this balance.

Table 4: F1-Score Comparison for Class 0 and Class 1

Classifier F1-Score (Class
0)

F1-Score (Class
1)

Random Forest 0.92 0.63
Logistic Regression 0.88 0.00

SVM 0.88 0.00
Gradient Boosting 0.90 0.32

k-Nearest
Neighbors 0.91 0.64

Figure 6: Graphical Representation of F1-Score

Balance
Table 4 provides detailed F1-Score metrics for each
classifier, offering a nuanced evaluation of precision
and recall performance for Class 0 (Pass) and Class 1
(Fail) based on historical test data. Random Forest
achieves a robust F1-Score of 0.92 for Pass instances,
demonstrating a harmonious balance between precision
and recall, while the F1-Score of 0.63 for Fail instances
reflects a commendable compromise. Logistic
Regression exhibits a commendable F1-Score of 0.88
for Pass instances, showcasing a balanced synthesis of
precision and recall. However, the absence of F1-Score
for Fail instances (marked as 0.00) underscores
challenges in achieving a balanced performance for
actual Fail instances. SVM mirrors Logistic
Regression's performance with a respectable F1-Score
of 0.88 for Pass instances but lacks any F1-Score for
Fail instances, highlighting the struggle to achieve a

balanced performance for actual Fail instances
Gradient Boosting demonstrates a high F1-Score of
0.90 for Pass instances, indicating a balanced
precision-recall trade-off. However, the F1-Score of
0.32 for Fail instances suggests challenges in achieving
a balanced performance for actual Fail instances. k-
Nearest Neighbors exhibits a high F1-Score of 0.91 for
Pass instances, signifying a balanced performance in
correctly identifying actual Pass instances. The F1-
Score of 0.64 for Fail instances reflects a balanced
precision-recall trade-off for actual Fail instances.
These F1-Score metrics offer a granular assessment of
each classifier's nuanced performance, essential for
predicting the probability of failure or pass for new test
cases based on historical data.

5. Confusion Matrix

A confusion matrix is a table that provides a detailed
breakdown of the model's predictions. It shows the counts
of true positives, true negatives, false positives, and false
negatives. The elements of the matrix represent different
outcomes based on the actual and predicted class labels.

The confusion matrix for the Random Forest model
illustrates the following outcomes: True Negatives (TN) -
9630, False Positives (FP) - 477, False Negatives (FN) -
1222, True Positives (TP) - 1476. This indicates that the
model accurately identified 9630 instances as "Pass" (class
0) and 1476 instances as "Fail" (class 1). However, it
mistakenly classified 477 instances as "Fail" when they
were "Pass" and 1222 instances as "Pass" when they were
"Fail."

The confusion matrix can be visually represented using a
heatmap, providing a clearer illustration in the figure 7.

Figure 7: Confusion Matrix of Random Forest

In both Logistic Regression and Support Vector Machines
(SVM), the confusion matrix reveals uniform values: True
Negatives (TN) amounting to 10,107, False Positives (FP)
registering at 0, False Negatives (FN) totaling 2,698, and
True Positives (TP) standing at 0. In the context of

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6227

Gradient Boosting, the confusion matrix displays TN:
10,063, FP: 44, FN: 2,175, and TP: 523. For the k-Nearest
Neighbors (k-NN) algorithm, the confusion matrix records

TN: 9,375, FP: 732, FN: 1,076, and TP: 1,622. Figure 8
visually illustrates the performance metrics in a heatmap
encompassing all the models.

Figure 8: Metrics Heatmap for Logistic Regression, SVM, Gradient Boosting, and k-NN Models

V. CONCLUSIONS

This present study explores optimizing test prioritization in
CI environments using machine learning classifiers. The
Random Forest classifier outperformed others with an 87%
accuracy, excelling in distinguishing pass and fail
outcomes. Logistic Regression and SVM faced challenges
with an imbalanced dataset. Including confusion matrices,
provided nuanced insights. For instance, the Random
Forest model exhibited 9630 true negatives, 477 false
positives, 1222 false negatives, and 1476 true positives.
While contributing to intelligent test prioritization in CI,
future work should focus on refining models, exploring
additional features, and addressing dataset imbalances for
enhanced CI pipeline efficiency. The predictive approach
showcases automation potential, optimizing resource
utilization and elevating software quality. As software
development evolves, leveraging machine learning in test
prioritization signifies a progressive shift. Ongoing
research can further refine models and adapt approaches to
diverse CI scenarios, shaping the future of software testing.

REFERENCES
[1] Durelli, V. H., Durelli, R. S., Borges, S. S., Endo, A.

T., Eler, M. M., Dias, D. R., & Guimarães, M. P.
(2019). Machine learning applied to software testing: A
systematic mapping study. IEEE Transactions on
Reliability, 68(3), 1189-1212, DOI:
https://doi.org/10.1109/TR.2019.2892517.

[2] Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019).
A comparison of random forest variable selection
methods for classification prediction modeling. Expert
systems with applications, 134, 93-101, DOI:
https://doi.org/10.1016/j.eswa.2019.05.028.

[3] Zhu, C., Idemudia, C. U., & Feng, W. (2019).
Improved logistic regression model for diabetes
prediction by integrating PCA and K-means
techniques. Informatics in Medicine Unlocked, 17,
100179, DOI:
https://doi.org/10.1016/j.imu.2019.100179.

[4] Marijan, D., & Gotlieb, A. (2020, April). Software
testing for machine learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 34,
No. 09, pp. 13576-13582, DOI:
https://doi.org/10.1609/aaai.v34i09.7084.

[5] Yucalar, F., Ozcift, A., Borandag, E., & Kilinc, D.
(2020). Multiple-classifiers in software quality
engineering: Combining predictors to improve software
fault prediction ability. Engineering Science and
Technology, an International Journal, 23(4), 938-950,
DOI: https://doi.org/10.1016/j.jestch.2019.10.005.

[6] Meçe, E. K., Paci, H., & Binjaku, K. (2020). The
application of machine learning in test case
prioritization-a review. European Journal of Electrical
Engineering and Computer Science, 4(1), DOI:
https://doi.org/10.24018/ejece.2020.4.1.128.

[7] Braiek, H. B., & Khomh, F. (2020). On testing
machine learning programs. Journal of Systems and

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 06 Pages: 6218 – 6228 (2024) ISSN: 0975-0290

6228

Software, 164, 110542, DOI:
https://doi.org/10.1016/j.jss.2020.110542.

[8] Khatibsyarbini, M., Isa, M. A., Jawawi, D. N., Shafie,
M. L. M., Wan-Kadir, W. M. N., Hamed, H. N. A., &
Suffian, M. D. M. (2021). Trend application of
machine learning in test case prioritization: A review
on techniques. IEEE Access, 9, 166262-166282.

[9] Goyal, J., & Ranjan Sinha, R. (2022). Software defect-
based prediction using logistic regression: Review and
challenges. In Second International Conference on
Sustainable Technologies for Computational
Intelligence: Proceedings of ICTSCI 2021 (pp. 233-
248). Springer Singapore, ISBN: 978-981-16-4640-9.

[10] Gezici, B., & Tarhan, A. K. (2022, September).
Explainable AI for Software Defect Prediction with
Gradient Boosting Classifier. In 2022 7th International
Conference on Computer Science and Engineering
(UBMK) (pp. 1-6). IEEE, DOI:
https://doi.org/10.1109/UBMK55850.2022.9919490.

[11] Omri, S. (2022). Quality-Aware Learning to Prioritize
Test Cases (Doctoral dissertation, Karlsruhe Institute of
Technology, Germany), DOI:
http://dx.doi.org/10.5445/IR/1000143079.

[12] Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L.
(2022). Test case selection and prioritization using
machine learning: a systematic literature
review. Empirical Software Engineering, 27(2), 29,
DOI: https://doi.org/10.1007/s10664-021-10066-6.

[13] Yaraghi, A. S., Bagherzadeh, M., Kahani, N., &
Briand, L. C. (2022). Scalable and accurate test case
prioritization in continuous integration contexts. IEEE
Transactions on Software Engineering, 49(4), 1615-
1639, DOI: https://doi.org/10.1109/TSE.2022.3184842.

[14] Da Roza, E. A., Lima, J. A. P., Silva, R. C., & Vergilio,
S. R. (2022, March). Machine learning regression
techniques for test case prioritization in continuous
integration environment. In 2022 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 196-206). IEEE, DOI:
https://doi.org/10.1109/SANER53432.2022.00034.

[15] Marijan, D. (2023). Comparative study of machine
learning test case prioritization for continuous
integration testing. Software Quality Journal, 1-24,
DOI: https://doi.org/10.1007/s11219-023-09646-0.

[16] Sánchez-García, A. J., López-Martín, C., & Abran, A.
(2023). Gradient Boosting Optimized Through
Differential Evolution for Predicting the Testing Effort
of Software Projects. IEEE Access, 11, 135235-135254,
DOI: https://doi.org/10.1109/ACCESS.2023.3337809.

[17] Ramesh, L., Radhika, S., & Jothi, S. (2023). Hybrid
support vector machine and K‐nearest neighbor‐based
software testing for educational assistant. Concurrency
and Computation: Practice and Experience, 35(1),
e7433, DOI: https://doi.org/10.1002/cpe.7433.

[18] Kumar, H., & Saxena, V. (2024). Software Defect
Prediction Using Hybrid Machine Learning
Techniques: A Comparative Study. Journal of Software
Engineering and Applications, 17(4), 155-171, DOI:
https://doi.org/10.4236/jsea.2024.174009.

[19] https://www.kaggle.com/datasets/joolousada/test-case-
prioritization-data (Accessed on 20 Dec. 2023).

[20] Ho, T. K. (1995, August). Random decision forests.
In Proceedings of 3rd international conference on
document analysis and recognition (Vol. 1, pp. 278-
282). IEEE, DOI:
https://doi.org/10.1109/ICDAR.1995.598994.

[21] Cramer, J.S., The Origins of Logistic Regression
(December 2002). Tinbergen Institute Working Paper
No. 2002-119/4, DOI:
http://dx.doi.org/10.2139/ssrn.360300.

[22] Cortes, C., & Vapnik, V. (1995). Support-vector
networks. Machine learning, 20, 273-297, DOI:
https://doi.org/10.1007/BF00994018.

[23] Breiman, L. (1997). Arcing the edge (pp. 1-14).
Technical Report 486, Statistics Department,
University of California at Berkeley, Available on
https://statistics.berkeley.edu/sites/default/files/tech-
reports/486.pdf.

[24] Fix, E., & Hodges Jr, J. L. (1951). Discriminatory
analysis: Nonparametric discrimination: Consistency
properties.

[25] Saxena, D. V., & Raj, D. (2010). Local Area Network
Performance Using UML. International Journal of
Advanced Networking and Applications, 2(02), 614-
620.

