
Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5786 - 5790 (2023) ISSN: 0975-0290

5786

Image Processing on Agricultural Dataset Using
Parallel Processing Based on Python

Faisal Dharma Adhinata

Doctoral Student of Computer Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
Email: faisaldharma@mail.ugm.ac.id

Ahmad Ashari*
Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia

Email: ashari@ugm.ac.id
Muhammad Alfian Amrizal

Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia
Email: muhammad.alfian.amrizal@ugm.ac.id

--ABSTRACT--
Parallel processing divides data to be processed in each core on the CPU. One programming language that is widely
used for machine learning applications and can accommodate the use of parallel processing is Python.
Multiprocessing, mpi4py and CuPy are examples of Python libraries that can process data in parallel. In this
research, we will compare the use of these libraries to process huge amounts of data. This research takes agricultural
data for data image enhancement through color conversion from RGB to grayscale. The results showed that
multiprocessing, mpi4py, and CuPy can increase the image enhancement speed three times faster than its single-
core execution. Then, using a combination of multiprocessing with CuPy, a 1.7 times performance improvement is
achieved compared with multiprocessing-only. Also, using a combination of mpi4py with CuPy achieved 2.5 times
performance improvement compared to mpi4py-only.

Keywords - Core CPU, parallel processing, mpi4py, multiprocessing, CuPy

--
Date of Submission: March 28, 2023 Date of Acceptance: April 20, 2023

--
I. INTRODUCTION

World population growth from year to year continues to

increase. Based on world statistical data [1], in 2022, the
world's population will continue to increase, even reaching
more than 8 billion. This increasing population increases
the need for daily food [2]. Therefore, the agricultural sector
is vital to meet the population's daily needs [3]. In addition,
the agricultural sector is also a source of income for
farmers. Some of the challenges faced by farmers in
cultivating their agriculture are agricultural land that
continues to decrease due to the increasing number of
residential buildings. In addition, farmers are also required
to produce good crops and increase production. One of the
factors that affect the quality and productivity of crops is
the presence of weeds that compete with the surrounding
crops [4][5][6].
Currently, efforts to clear weeds are still done manually
using pesticide sprayers operated by farmers [7]. This
manual method requires effort and time, making it
inefficient [8]. In addition, since weeds and crops often
grow next to each other, it is difficult to spray only on the
weeds, causing a waste of pesticides. Therefore, an
automation system is needed to detect areas of weeds and
crops for higher precision in spraying. One of the
processing stages of the automation system is image
enhancement. Image enhancement prepares the dataset
before being processed in the next processing stage [9]. In
this research, many agricultural image datasets will be used.
Due to the large number of datasets, the computation time

for image enhancement will be huge. Hence, a strategy to
speed up the computation time is required.
One technique to speed up the computation time is parallel
processing [10]. Parallel processing is designed by dividing
the data execution into several computers / or cores of the
Central Processing Unit (CPU). The use of parallel
processing is widely applied in various fields. In this
research, we are going to explore parallel processing in
Python because this language is widely used for image
processing in general [11]. The common libraries for
parallel processing in Python include mpi4py [12],
multiprocessing [13], and CuPy [14]. For example, Abutaha
et al. [15] use parallel processing based on the Message
Passing Interface (MPI) for image encryption. This
encryption aims to secure image transmission over the
network. The results of this research show that MPI can
speed up the encryption process 1.5 times faster compared
to single-core execution. Parallel processing is also used for
real-time face recognition [16]. In this research, a
comparison was made between the use of multiprocessing
library and without it. Experimental results show that
multiprocessing can make the execution time two times
faster. Parallel processing can also be done by using both
CPU and the Graphics Processing Unit (GPU) using the
CuPy library. CuPy allows the usage of GPU using a
parallel computing platform and programming model
named CUDA (Compute Unified Device Architecture)
[14]. Chetlur et al. [17] used CuPy to process image dataset
using CNN and show an increase of 36% in computation
time. This research will implement parallel processing in

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5786 - 5790 (2023) ISSN: 0975-0290

5787

the context of image enhancement, namely converting RGB
colors to grayscale.
The result of a photograph from a digital camera is an image
with RGB color (3 color channels). However, the image
processing stage usually uses grayscale color (1 color
channel) to speed up computation time. This process
requires parallel processing because the datasets are
processed in large quantities and are large. This research
will compare the utilization of parallel processing using
mpi4py, multiprocessing, and CuPy libraries. The expected
result is to increase the computation time in performing
image enhancement of large datasets. Evaluation is done by
measuring how fast the execution time is. The following are
the contributions of this research:
 Implementation of mpi4py, multiprocessing, and CuPy to

speed up the process of computing large amounts of
agriculture dataset containing the images of crops and
weeds.

 Extensive performance comparisons with single core
execution.

II. MATERIALS AND METHODOLOGY

The flow chart explaining the methodologies of this
research is shown in Figure 1. Datasets in the form of RGB
images will be converted to grayscale using parallel
processing with the mpi4py library, multiprocessing, and
CuPy in Python.

Start

Agriculture
dataset

Convert to grayscale
using Luminance

End

Parallel computing:
 mpi4py
 Multiprocessing
 CuPy

Fig 1. Procedure for comparing various Python’s

parallel processing libraries on agricultural dataset

A. Dataset and System Specification

The dataset used in this research contains 1931 images of
corn and weeds photographed in the field in Ponorogo,
Indonesia. The image resolution sizes used in this research
are 1920 x 1080, 1280 x 720, and 640 x 360. The raw
images use RGB as their color format. Figure 2 shows an
example of the images used in this research.

Fig 2. An example of an image dataset in this research

B. Image enhancement data

Image enhancement data is a process that is carried out on
RGB of raw data with grayscale operation. The equation
used to change the color format from RGB to grayscale is
shown in Equation (1).

Gray = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B (1)

R, G, and B are numbers between 0 and 255. Take note that
the weights of R, G, B are not assigned equally. Green has
a higher density than either red or blue, hence its weight is
the largest. While blue is the darkest among the three, thus
it carries the smallest weight.
Figure 3 shows the program to convert RGB to grayscale.
This program has a function named RGB_to_Gray that
accepts the RGB of each pixel stored as a NumPy array and
returns the converted values in grayscale. This function
calculates the dot product between the 3D matrix,
representing the RGB values, and the weight vector [0.299,
0.587, 0.114], representing the color conversion's weight.

def RGB_to_Gray(rgb):
 return np.dot(rgb[...,:3], [0.299,
0.587, 0.114])

Fig 3. Code of converting RGB to grayscale

C. mpi4py

mpi4py (MPI for Python) is a library in Python that utilize
the standard message exchange interface between multiple
computers/cores named MPI (Message Passing Interface)
[18]. Initially, it was a tool for high-performance computing
in the early 1990s, with version 1.0 being launched in June
1994. In the early days of MPI, C/C++ and Fortran were
utilized almost exclusively. Over time, versions of MPI or
MPI bindings were made available for additional
programming languages, including Java, C#, MATLAB,
OCaml, R, and Python. Given the advent of machine
learning with Python, mpi4py was built for Python using
the MPI-2 standard's C++ bindings [12]. The schematic
example of the MPI.COMM_WORLD communicator with
six tasks and their corresponding levels is shown in Figure
4. The configuration of the MPI program in this research
was carried out by splitting the image according to the
number of cores in the system.

MPI.COMM_WORLD

Rank-0 task Rank-1 task

Rank-2 task Rank-3 task

Rank-4 task Rank-5 task

Fig 4. Example of MPI with six tasks corresponds to
the task in core-0

The implementation of the mpi4py program is shown in
Figure 5. The number of images distributed to each core is
decided based on the number of images in the image_files
folder divided by the number of cores. In this case, if the
number of cores is four, the images in the folder will be
divided by four and processed on the corresponding core
according to the rank.

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5786 - 5790 (2023) ISSN: 0975-0290

5788

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

num_images_per_core = len(image_files) // size
start_index = rank * num_images_per_core
end_index = start_index + num_images_per_core

Fig 5. mpi4py program

D. Multiprocessing

The Global Interpreter Lock (GIL), which permits only one
thread to carry the Python interpreter at any given moment,
causes single-CPU core usage in Python [19]. The GIL was
implemented to address a problem with memory
management, but as a result, Python is restricted to single-
core execution. Bypassing the GIL when executing Python
code enables the code to run quicker because multicore of
the system may now be utilized. The built-in
multiprocessing library of Python enables us to select
specific parts of code to escape the GIL and execute
concurrently on several cores. An illustration of the usage
of multiprocessing in Python is shown in Figure 6. In this
simplified example, if all three threads have identical
execution durations, the total execution time will be
reduced approximately by the factor of three.

Python Code

import multiprocessing

Thread 1 = a
Thread 2 = b
Thread 3 = c

Python Global
Interpreter Lock

CPU core

CPU core

CPU core

thread 1

thread 3

thread 2

Fig 6. Illustration of multiprocessing in Python

The program code using the multiprocessing library is
shown in Figure 7. The Pool function is responsible for
preparing the worker threads. The number of worker
threads is by default equals to the number of the system's
logical CPU cores. In this code, list_image is the total
number of images in the image_files folder.

def image_processing(image_files):
 img_ori = … # read image
 grayImage = RGB_to_Gray(img_ori)
 return

with Pool(workers) as p:
 p.map(image_processing, list_image)

Fig 7. Multiprocessing program

E. CuPy

CUDA (Compute Unified Device Architecture) is a
platform for parallel processing as well as an application
programming interface (API) that makes it possible for the
software to use certain varieties of graphics processing units
(GPUs) for general-purpose processing [20]. This method
is referred to as general-purpose computing on GPUs
(GPGPU). CUDA is a software layer that allows for direct
access to the parallel processing units and the virtual
instruction set of the GPU. This access is provided for the

execution of computer kernels. Through parallel
processing, CUDA speeds up the training process for
machine learning and deep learning (i.e., instead of training
on just a single compute instance, it divides the task and
trains on different compute instances).
CUDA can be used in Python with the library CuPy [14]. It
is implemented on top of CUDA and integrated with
NumPy. The basic class for multi-dimensional arrays in
CuPy is called cupy.ndarray, and many different functions
are based on this class. It can speed up the already existing
NumPy code by utilizing the GPU and CUDA libraries. The
program code for using CuPy is shown in Figure 8. The
code is almost the same as the original one, the main
difference is, np.dot is replaced with cp.dot.

def RGB_to_Gray(rgb):
 gpu_weight = cp.asarray([0.299, 0.587, 0.114])
 return cp.dot(rgb[...,:3], gpu_weight)

for img in glob.glob('./dataHD/*.jpg'):
 image = cp.asarray(cv2.imread(img))
 gray = RGB_to_Gray(image)

Fig 8. CuPy program

F. System Evaluation

The computer system for the evaluation of the image
enhancement code consists of an Intel Core i5-11400H (12
cores) CPU, an 8GB RAM, and an NVIDIA GTX 1650
GPU. Three different image resolutions, namely 1920 x
1080, 1280 x 720, and 640 x 360, were tested on six
different implementations, i.e., simple (no parallel
processing), mpi4py, multiprocessing, CuPy, mpi4py +
CuPy, and multiprocessing + CuPy. For the mpi4py and
multiprocessing implementations, the test is conducted by
varying the number of CPU cores (2, 4, 6, 8, 10, and 12
cores). The evaluation results will be graphed to see the
trends in execution time.

III. RESULT AND DISCUSSION

In this section, the discussion will start with a simple
program for converting to grayscale color. Next, the
program is modified using MPI. Then, simple programs are
also modified by multiprocessing. Finally, the program is
modified using GPU-based MPI or multiprocessing. The
final section will compare the experimental results obtained
with previous studies.

A. Simple program

A simple program uses a loop to call a dataset with the .jpg
extension from a directory. The dataset is converted into a
grayscale. The experimental results are shown in Table 1.

Table 1. Computation time using simple program

Resolution Computation time (s)
1920 × 1080 126.0677
1280 x 720 55.6947
640 x 360 14.2379

Based on Table 1, the experimental results show that there
is an effect of using image resolution on program
computation time. The higher the image resolution, the

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5786 - 5790 (2023) ISSN: 0975-0290

5789

longer the computation time. Even for a resolution of 1920
x 1080, it takes more than 2 minutes to process all datasets.
Therefore, this simple program must be modified using
mpi4py, multiprocessing, or CuPy libraries.

B. mpi4py Program

The MPI program in Python uses the mpi4py library. Figure
9 is an experimental graph of the program using mpi4py.

Fig 9. The result of experiment using mpi4py program

Based on Figure 9, the experimental results show that the
more core values added to the CPU, the faster the
computing time. For example, when compared with the
simple program in Table 1, using mpi4py is three times
faster than without using mpi4py. It is because there is an
image division on each CPU core for RGB to grayscale
conversion processing.

C. Multiprocessing Program

In this experiment, multiprocessing in Python uses the
multiprocessing library. Then in Figure 10 is the result of
an experiment using multiprocessing.

Fig 10. The result of experiment using multiprocessing

program

Based on Figure 10, multiprocessing is three times faster
than the simple program in Table 1. Compared to the use of
mpi4py, as shown in Figure 7, multiprocessing is slightly
faster than the use of mpi4py. This multiprocessing library
uses several worker processes to process the program.

D. CuPy Program

The Python library used for GPU usage is CuPy. Then
Figure 11 is the result of an experiment using a CuPy-based
GPU.

Fig 11. The result of experiment using simple, mpi4py,

multiprocessing, and combined with CuPy

This CuPy usage experiment was carried out on a simple
program, a combination of mpi4py and CuPy, and a
combination of multiprocessing and CuPy. The number of
cores used in this experiment is two cores. The
experimental results are shown in Figure 11. First, The use
of CuPy is three times faster than simple programs at Full
HD resolution (1920 x 1080). Then, when using a
combination of mpi4py and CuPy, the experimental results
show that it is 2.5 times faster than regular mpi4py. Then,
when using a combination of multiprocessing and CuPy, the
experimental results show that it is 1.7 times faster than
ordinary multiprocessing. These results are seen from the
FullHD dataset.

E. Discussion

Big data processing requires a specific strategy to process
it. In simple programming using Python, it only uses one
thread at a time because it has a Global Interpreter Lock
(GIL). In this research, the proposed strategy uses parallel
processing. Using parallel processing in both mpi4py,
multiprocessing, and CuPy can speed up the computation
time of the programs created. Based on previous research,
using mpi4py can increase performance by 1.5 times faster
[15], then multiprocessing is two times faster [16], and
using CuPy can speed up 0.36 [17]. In this research, using
mpi4py and multiprocessing can speed up simple programs
three times. Then the use of the CuPy combined with
multiprocessing and mpi4py can speed up 1.7 and 2.5
compared to the use of ordinary multiprocessing and
mpi4py. Suggestions for future research are to apply
parallel processing for case studies that use real-time data.
This real-time data requires the algorithm to run quickly to
minimize delays.

IV. CONCLUSION

This paper compares parallel processing using MPI,
multiprocessing, and GPU using Python programming.
Python programming provides various libraries for parallel

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5786 - 5790 (2023) ISSN: 0975-0290

5790

processing, such as mpi4py, multiprocessing, and CuPy.
The use of parallel processing is an effort to speed up the
program computation process. In addition, there are quite a
lot of datasets to be processed. The results show that all the
use of parallel processing libraries is proven to speed up
computing time. The use of parallel processing is necessary
to process large amounts of data to speed up program
computation time.

REFERENCES

[1] P. D. Department of Economic and Social Affairs,
World Population Prospects 2022, no. 9. 2022.
[Online]. Available: www.un.org/development/
desa/pd/.

[2] T. Talaviya, D. Shah, N. Patel, H. Yagnik, and M.
Shah, “Implementation of artificial intelligence in
agriculture for optimisation of irrigation and
application of pesticides and herbicides,” Artificial
Intelligence in Agriculture, vol. 4, pp. 58–73, 2020,
doi: 10.1016/j.aiia.2020.04.002.

[3] K. Prakash, P. Saravanamoorthi, R. Sathishkumar,
and M. Parimala, “A Study of Image Processing in
Agriculture,” International Journal of Advanced
Networking and Applications - IJANA, vol. 9, no.
1, pp. 3311–3315, 2017, [Online]. Available:
https://www.ijana.in/v9-1.php#

[4] S. Sabzi, Y. Abbaspour-Gilandeh, and J. I. Arribas,
“An automatic visible-range video weed detection,
segmentation and classification prototype in potato
field,” Heliyon, vol. 6, no. 5, p. e03685, 2020, doi:
10.1016/j.heliyon.2020.e03685.

[5] A. Berquer, V. Bretagnolle, O. Martin, and S. Gaba,
“Disentangling the effect of nitrogen input and
weed control on crop–weed competition suggests a
potential agronomic trap in conventional farming,”
Agriculture, Ecosystems and Environment, vol.
345, no. July 2021, p. 108232, 2023, doi:
10.1016/j.agee.2022.108232.

[6] C. Nathalie, N. Munier-Jolain, F. Dugué, A.
Gardarin, F. Strbik, and D. Moreau, “The response
of weed and crop species to shading. How to predict
their morphology and plasticity from species traits
and ecological indexes?,” European Journal of
Agronomy, vol. 121, no. August, 2020, doi:
10.1016/j.eja.2020.126158.

[7] P. Kanade, M. Akhtar, F. David, and S. Kanade,
“Agricultural Mobile Robots In Weed Management
And Control,” International Journal of Advanced
Networking and Applications, vol. 13, no. 03, pp.
5001–5006, 2021, doi: 10.35444/ijana.2021.13309.

[8] K. Xiao, Y. Ma, and G. Gao, “An intelligent
precision orchard pesticide spray technique based
on the depth-of-field extraction algorithm,”
Computers and Electronics in Agriculture, vol. 133,
pp. 30–36, 2017, doi:
10.1016/j.compag.2016.12.002.

[9] A. Sharma and P. K. Mishra, “Image enhancement
techniques on deep learning approaches for
automated diagnosis of COVID-19 features using
CXR images,” Multimedia Tools and Applications,

2022, doi: 10.1007/s11042-022-13486-8.
[10] A. Al-shafei, H. Zareipour, and Y. Cao, “High-

Performance and Parallel Computing Techniques
Review: Applications, Challenges and Potentials to
Support Net-Zero Transition of Future Grids,”
2022.

[11] S. Farshidi, S. Jansen, and M. Deldar, “A decision
model for programming language ecosystem
selection: Seven industry case studies,”
Information and Software Technology, vol. 139,
no. May 2020, p. 106640, 2021, doi:
10.1016/j.infsof.2021.106640.

[12] L. Dalcin and Y. L. L. Fang, “Mpi4py: Status
Update after 12 Years of Development,”
Computing in Science and Engineering, vol. 23, no.
4, pp. 47–54, 2021, doi:
10.1109/MCSE.2021.3083216.

[13] D. Beazley, “Secrets of the Multiprocessing
Module,” Login, vol. 37, no. 5, pp. 61–70, 2012.

[14] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C.
Loomis, “CuPy: A NumPy-compatible library for
NVIDIA GPU calculations,” Workshop on
Machine Learning Systems (LearningSys) at
Neural Information Processing Systems (NIPS), no.
Nips, pp. 1–7, 2017, [Online]. Available:
http://learningsys.org/nips17/assets/papers/paper_
16.pdf

[15] E. Based, P. Interface, M. Abutaha, I. Amar, and S.
Alqahtani, “Parallel and Practical Approach of
Efficient Image Chaotic Encryption Based on
Message Passing Interface (MPI),” entropy Article,
pp. 1–22, 2022.

[16] M. S. U. Yusuf and A. A. Fuad, “Real Time
Implementation of Face Recognition based Smart
Attendance System,” Wseas Transactions on Signal
Processing, vol. 17, pp. 46–56, 2021, doi:
10.37394/232014.2021.17.6.

[17] S. Chetlur et al., “cuDNN: Efficient Primitives for
Deep Learning,” pp. 1–9, 2014, [Online].
Available: http://arxiv.org/abs/1410.0759

[18] N. Sultana, M. Rüfenacht, A. Skjellum, P.
Bangalore, I. Laguna, and K. Mohror,
“Understanding the use of message passing
interface in exascale proxy applications,”
Concurrency and Computation: Practice and
Experience, vol. 33, no. 14, pp. 1–15, 2021, doi:
10.1002/cpe.5901.

[19] S. H. Lee, “Real-time edge computing on multi-
processes and multi-threading architectures for
deep learning applications,” Microprocessors and
Microsystems, vol. 92, no. December 2021, p.
104554, 2022, doi: 10.1016/j.micpro.2022.104554.

[20] M. J. Mišić, Đ. M. Đurđević, and M. V Tomašević,
“Evolution and trends in GPU computing,” in 2012
Proceedings of the 35th International Convention
MIPRO, 2012, pp. 289–294.

