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----------------------------------------------------------------------ABSTRACT------------------------------------------------------------ 
Parallel processing divides data to be processed in each core on the CPU. One programming language that is widely 
used for machine learning applications and can accommodate the use of parallel processing is Python. 
Multiprocessing, mpi4py and CuPy are examples of Python libraries that can process data in parallel. In this 
research, we will compare the use of these libraries to process huge amounts of data. This research takes agricultural 
data for data image enhancement through color conversion from RGB to grayscale. The results showed that 
multiprocessing, mpi4py, and CuPy can increase the image enhancement speed three times faster than its single-
core execution. Then, using a combination of multiprocessing with CuPy, a 1.7 times performance improvement is 
achieved compared with multiprocessing-only. Also, using a combination of mpi4py with CuPy achieved 2.5 times 
performance improvement compared to mpi4py-only. 
 
Keywords - Core CPU, parallel processing, mpi4py, multiprocessing, CuPy  

---------------------------------------------------------------------------------------------------------------------------------------------------- 
Date of Submission: March 28, 2023                                                           Date of Acceptance: April 20, 2023 

----------------------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION 

World population growth from year to year continues to 

increase. Based on world statistical data [1], in 2022, the 
world's population will continue to increase, even reaching 
more than 8 billion. This increasing population increases 
the need for daily food [2]. Therefore, the agricultural sector 
is vital to meet the population's daily needs [3]. In addition, 
the agricultural sector is also a source of income for 
farmers. Some of the challenges faced by farmers in 
cultivating their agriculture are agricultural land that 
continues to decrease due to the increasing number of 
residential buildings. In addition, farmers are also required 
to produce good crops and increase production. One of the 
factors that affect the quality and productivity of crops is 
the presence of weeds that compete with the surrounding 
crops [4][5][6]. 
Currently, efforts to clear weeds are still done manually 
using pesticide sprayers operated by farmers [7]. This 
manual method requires effort and time, making it 
inefficient [8]. In addition, since weeds and crops often 
grow next to each other, it is difficult to spray only on the 
weeds, causing a waste of pesticides. Therefore, an 
automation system is needed to detect areas of weeds and 
crops for higher precision in spraying. One of the 
processing stages of the automation system is image 
enhancement. Image enhancement prepares the dataset 
before being processed in the next processing stage [9]. In 
this research, many agricultural image datasets will be used. 
Due to the large number of datasets, the computation time 

for image enhancement will be huge. Hence, a strategy to 
speed up the computation time is required. 
One technique to speed up the computation time is parallel 
processing [10]. Parallel processing is designed by dividing 
the data execution into several computers / or cores of the 
Central Processing Unit (CPU). The use of parallel 
processing is widely applied in various fields. In this 
research, we are going to explore parallel processing in 
Python because this language is widely used for image 
processing in general [11]. The common libraries for 
parallel processing in Python include mpi4py [12], 
multiprocessing [13], and CuPy [14]. For example, Abutaha 
et al. [15] use parallel processing based on the Message 
Passing Interface (MPI) for image encryption. This 
encryption aims to secure image transmission over the 
network. The results of this research show that MPI can 
speed up the encryption process 1.5 times faster compared 
to single-core execution. Parallel processing is also used for 
real-time face recognition [16]. In this research, a 
comparison was made between the use of multiprocessing 
library and without it. Experimental results show that 
multiprocessing can make the execution time two times 
faster. Parallel processing can also be done by using both 
CPU and the Graphics Processing Unit (GPU) using the 
CuPy library. CuPy allows the usage of GPU using a 
parallel computing platform and programming model 
named CUDA (Compute Unified Device Architecture) 
[14]. Chetlur et al. [17] used CuPy to process image dataset 
using CNN and show an increase of 36% in computation 
time. This research will implement parallel processing in 
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the context of image enhancement, namely converting RGB 
colors to grayscale. 
The result of a photograph from a digital camera is an image 
with RGB color (3 color channels). However, the image 
processing stage usually uses grayscale color (1 color 
channel) to speed up computation time. This process 
requires parallel processing because the datasets are 
processed in large quantities and are large. This research 
will compare the utilization of parallel processing using 
mpi4py, multiprocessing, and CuPy libraries. The expected 
result is to increase the computation time in performing 
image enhancement of large datasets. Evaluation is done by 
measuring how fast the execution time is. The following are 
the contributions of this research: 
 Implementation of mpi4py, multiprocessing, and CuPy to 

speed up the process of computing large amounts of 
agriculture dataset containing the images of crops and 
weeds. 

 Extensive performance comparisons with single core 
execution. 

II. MATERIALS AND METHODOLOGY 

The flow chart explaining the methodologies of this 
research is shown in Figure 1. Datasets in the form of RGB 
images will be converted to grayscale using parallel 
processing with the mpi4py library, multiprocessing, and 
CuPy in Python. 
 

Start

Agriculture 
dataset

Convert to grayscale 
using Luminance

End

Parallel computing:
 mpi4py
 Multiprocessing
 CuPy

 
Fig 1. Procedure for comparing various Python’s 

parallel processing libraries on agricultural dataset 

A. Dataset and System Specification 

The dataset used in this research contains 1931 images of 
corn and weeds photographed in the field in Ponorogo, 
Indonesia. The image resolution sizes used in this research 
are 1920 x 1080, 1280 x 720, and 640 x 360. The raw 
images use RGB as their color format. Figure 2 shows an 
example of the images used in this research.  
 

  
Fig 2. An example of an image dataset in this research 

B. Image enhancement data 

Image enhancement data is a process that is carried out on 
RGB of raw data with grayscale operation. The equation 
used to change the color format from RGB to grayscale is 
shown in Equation (1). 
 

Gray =  0.299 ∗ R +  0.587 ∗ G +  0.114 ∗ B           (1) 
 

R, G, and B are numbers between 0 and 255. Take note that 
the weights of R, G, B are not assigned equally. Green has 
a higher density than either red or blue, hence its weight is 
the largest. While blue is the darkest among the three, thus 
it carries the smallest weight.  
Figure 3 shows the program to convert RGB to grayscale. 
This program has a function named RGB_to_Gray that 
accepts the RGB of each pixel stored as a NumPy array and 
returns the converted values in grayscale. This function 
calculates the dot product between the 3D matrix, 
representing the RGB values, and the weight vector [0.299, 
0.587, 0.114], representing the color conversion's weight. 
 
def RGB_to_Gray(rgb): 
    return np.dot(rgb[...,:3], [0.299, 
0.587, 0.114]) 

Fig 3. Code of converting RGB to grayscale 

C. mpi4py 

mpi4py (MPI for Python) is a library in Python that utilize 
the standard message exchange interface between multiple 
computers/cores named MPI (Message Passing Interface) 
[18]. Initially, it was a tool for high-performance computing 
in the early 1990s, with version 1.0 being launched in June 
1994. In the early days of MPI, C/C++ and Fortran were 
utilized almost exclusively. Over time, versions of MPI or 
MPI bindings were made available for additional 
programming languages, including Java, C#, MATLAB, 
OCaml, R, and Python. Given the advent of machine 
learning with Python, mpi4py was built for Python using 
the MPI-2 standard's C++ bindings [12]. The schematic 
example of the MPI.COMM_WORLD communicator with 
six tasks and their corresponding levels is shown in Figure 
4. The configuration of the MPI program in this research 
was carried out by splitting the image according to the 
number of cores in the system.  

MPI.COMM_WORLD

Rank-0 task Rank-1 task

Rank-2 task Rank-3 task

Rank-4 task Rank-5 task
 

Fig 4. Example of MPI with six tasks corresponds to 
the task in core-0  

The implementation of the mpi4py program is shown in 
Figure 5. The number of images distributed to each core is 
decided based on the number of images in the image_files 
folder divided by the number of cores. In this case, if the 
number of cores is four, the images in the folder will be 
divided by four and processed on the corresponding core 
according to the rank.  



Int. J. Advanced Networking and Applications   
Volume: 15 Issue: 01    Pages: 5786 - 5790 (2023) ISSN: 0975-0290 
 

5788

 
comm = MPI.COMM_WORLD 
rank = comm.Get_rank() 
size = comm.Get_size() 
 
num_images_per_core = len(image_files) // size 
start_index = rank * num_images_per_core 
end_index = start_index + num_images_per_core 

Fig 5. mpi4py program 

D. Multiprocessing 

The Global Interpreter Lock (GIL), which permits only one 
thread to carry the Python interpreter at any given moment, 
causes single-CPU core usage in Python [19]. The GIL was 
implemented to address a problem with memory 
management, but as a result, Python is restricted to single-
core execution. Bypassing the GIL when executing Python 
code enables the code to run quicker because multicore of 
the system may now be utilized. The built-in 
multiprocessing library of Python enables us to select 
specific parts of code to escape the GIL and execute 
concurrently on several cores. An illustration of the usage 
of multiprocessing in Python is shown in Figure 6. In this 
simplified example, if all three threads have identical 
execution durations, the total execution time will be 
reduced approximately by the factor of three. 

Python Code

import multiprocessing

Thread 1 = a
Thread 2 = b
Thread 3 = c

Python Global
Interpreter Lock

CPU core

CPU core

CPU core

thread 1

thread 3

thread 2

 

Fig 6. Illustration of multiprocessing in Python 

The program code using the multiprocessing library is 
shown in Figure 7. The Pool function is responsible for 
preparing the worker threads. The number of worker 
threads is by default equals to the number of the system's 
logical CPU cores. In this code, list_image is the total 
number of images in the image_files folder.  

def image_processing(image_files): 
    img_ori = … # read image  
    grayImage = RGB_to_Gray(img_ori) 
    return 
  
with Pool(workers) as p: 
    p.map(image_processing, list_image) 

Fig 7. Multiprocessing program 

E. CuPy 

CUDA (Compute Unified Device Architecture) is a 
platform for parallel processing as well as an application 
programming interface (API) that makes it possible for the 
software to use certain varieties of graphics processing units 
(GPUs) for general-purpose processing [20]. This method 
is referred to as general-purpose computing on GPUs 
(GPGPU). CUDA is a software layer that allows for direct 
access to the parallel processing units and the virtual 
instruction set of the GPU. This access is provided for the 

execution of computer kernels. Through parallel 
processing, CUDA speeds up the training process for 
machine learning and deep learning (i.e., instead of training 
on just a single compute instance, it divides the task and 
trains on different compute instances). 
CUDA can be used in Python with the library CuPy [14]. It 
is implemented on top of CUDA and integrated with 
NumPy. The basic class for multi-dimensional arrays in 
CuPy is called cupy.ndarray, and many different functions 
are based on this class. It can speed up the already existing 
NumPy code by utilizing the GPU and CUDA libraries. The 
program code for using CuPy is shown in Figure 8. The 
code is almost the same as the original one, the main 
difference is, np.dot is replaced with cp.dot. 
 
def RGB_to_Gray(rgb): 
    gpu_weight = cp.asarray([0.299, 0.587, 0.114]) 
    return cp.dot(rgb[...,:3], gpu_weight) 
  
for img in glob.glob('./dataHD/*.jpg'): 
    image = cp.asarray(cv2.imread(img)) 
    gray = RGB_to_Gray(image) 

Fig 8. CuPy program 

F. System Evaluation 

The computer system for the evaluation of the image 
enhancement code consists of an Intel Core i5-11400H (12 
cores) CPU, an 8GB RAM, and an NVIDIA GTX 1650 
GPU. Three different image resolutions, namely 1920 x 
1080, 1280 x 720, and 640 x 360, were tested on six 
different implementations, i.e., simple (no parallel 
processing), mpi4py, multiprocessing, CuPy, mpi4py + 
CuPy, and multiprocessing + CuPy. For the mpi4py and 
multiprocessing implementations, the test is conducted by 
varying the number of CPU cores (2, 4, 6, 8, 10, and 12 
cores). The evaluation results will be graphed to see the 
trends in execution time. 

III. RESULT AND DISCUSSION 

In this section, the discussion will start with a simple 
program for converting to grayscale color. Next, the 
program is modified using MPI. Then, simple programs are 
also modified by multiprocessing. Finally, the program is 
modified using GPU-based MPI or multiprocessing. The 
final section will compare the experimental results obtained 
with previous studies.  

A. Simple program 

A simple program uses a loop to call a dataset with the .jpg 
extension from a directory. The dataset is converted into a 
grayscale. The experimental results are shown in Table 1. 
 
Table 1. Computation time using simple program 

Resolution Computation time (s) 
1920 × 1080 126.0677 
1280 x 720 55.6947 
640 x 360 14.2379 

 
Based on Table 1, the experimental results show that there 
is an effect of using image resolution on program 
computation time. The higher the image resolution, the 
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longer the computation time. Even for a resolution of 1920 
x 1080, it takes more than 2 minutes to process all datasets. 
Therefore, this simple program must be modified using 
mpi4py, multiprocessing, or CuPy libraries. 

B. mpi4py Program 

The MPI program in Python uses the mpi4py library. Figure 
9 is an experimental graph of the program using mpi4py. 
 

 
Fig 9. The result of experiment using mpi4py program 
 
Based on Figure 9, the experimental results show that the 
more core values added to the CPU, the faster the 
computing time. For example, when compared with the 
simple program in Table 1, using mpi4py is three times 
faster than without using mpi4py. It is because there is an 
image division on each CPU core for RGB to grayscale 
conversion processing. 

C. Multiprocessing Program 

In this experiment, multiprocessing in Python uses the 
multiprocessing library. Then in Figure 10 is the result of 
an experiment using multiprocessing.  

 

 
Fig 10. The result of experiment using multiprocessing 

program 
 

Based on Figure 10, multiprocessing is three times faster 
than the simple program in Table 1. Compared to the use of 
mpi4py, as shown in Figure 7, multiprocessing is slightly 
faster than the use of mpi4py. This multiprocessing library 
uses several worker processes to process the program. 

D. CuPy Program 

The Python library used for GPU usage is CuPy. Then 
Figure 11 is the result of an experiment using a CuPy-based 
GPU. 

 

 
Fig 11. The result of experiment using simple, mpi4py, 

multiprocessing, and combined with CuPy 
 

This CuPy usage experiment was carried out on a simple 
program, a combination of mpi4py and CuPy, and a 
combination of multiprocessing and CuPy. The number of 
cores used in this experiment is two cores. The 
experimental results are shown in Figure 11. First, The use 
of CuPy is three times faster than simple programs at Full 
HD resolution (1920 x 1080). Then, when using a 
combination of mpi4py and CuPy, the experimental results 
show that it is 2.5 times faster than regular mpi4py. Then, 
when using a combination of multiprocessing and CuPy, the 
experimental results show that it is 1.7 times faster than 
ordinary multiprocessing. These results are seen from the 
FullHD dataset.  

E. Discussion 

Big data processing requires a specific strategy to process 
it. In simple programming using Python, it only uses one 
thread at a time because it has a Global Interpreter Lock 
(GIL). In this research, the proposed strategy uses parallel 
processing. Using parallel processing in both mpi4py, 
multiprocessing, and CuPy can speed up the computation 
time of the programs created. Based on previous research, 
using mpi4py can increase performance by 1.5 times faster 
[15], then multiprocessing is two times faster [16], and 
using CuPy can speed up 0.36 [17]. In this research, using 
mpi4py and multiprocessing can speed up simple programs 
three times. Then the use of the CuPy combined with 
multiprocessing and mpi4py can speed up 1.7 and 2.5 
compared to the use of ordinary multiprocessing and 
mpi4py. Suggestions for future research are to apply 
parallel processing for case studies that use real-time data. 
This real-time data requires the algorithm to run quickly to 
minimize delays. 

IV. CONCLUSION 

This paper compares parallel processing using MPI, 
multiprocessing, and GPU using Python programming. 
Python programming provides various libraries for parallel 



Int. J. Advanced Networking and Applications   
Volume: 15 Issue: 01    Pages: 5786 - 5790 (2023) ISSN: 0975-0290 
 

5790

processing, such as mpi4py, multiprocessing, and CuPy. 
The use of parallel processing is an effort to speed up the 
program computation process. In addition, there are quite a 
lot of datasets to be processed. The results show that all the 
use of parallel processing libraries is proven to speed up 
computing time. The use of parallel processing is necessary 
to process large amounts of data to speed up program 
computation time. 
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