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----------------------------------------------------------------------ABSTRACT-------------------------------------------------------------- 
Graphs are basic requirement of research in many fields like electrical circuits, computer networks, Genome 
sequencing, traffic flow, compiler design and cryptography to name a few. There are three fundamental issues one has 
to address in respect of an undirected graph. First, given a number of nodes, how many unique degree sequences can 
be there to handle? Second, out of these unique degree sequences, how many are graphic? And third, how to generate 
random graphs for a degree sequence? This paper presents working solutions for all these issues. An efficient algorithm 
to find all unique degree sequences for a given number of nodes is presented. An algorithm based on Havel-Kasami 
algorithm is presented which is more efficient than Erdos-Gallai algorithm to test the connectivity. Finally, an 
algorithm to generate random graphs is also presented. 
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I. INTRODUCTION 

The first proven application of graphs dates back to as early 
as 1736. It was Euler who used graphs to solve the classical 
Kownigsberg bridge problem. Since then, the applications of 
graphs have exploded exponentially in number. It would not 
be an exaggeration to say that among all mathematical 
structures, graphs are most cited and used. Deo [1] and 
Harary [2] have given excellent treatment to the subject of 
graphs. One can refer to Choudham [3] for a very basic 
treatment. 
 
     Formally, a graph G can be defined as an ordered pair (V, 
E) i.e., G = (V, E) where V is a finite set of vertices or nodes 
or points and E is a set of edges or arcs. More formally,  
 

V = {v0, v1, …., vn-1}, 1 ≤ |V | < ∞ 
 

and 
 

E = {(vi, vj): vi, vj ∈ V and i ≠ j}, 0 ≤ |E | < ∞ 
 

     Here, |V| and |E| mean the number of elements in 
respective sets. If i = j then the edge is called a self-loop. Such 
graphs and the graphs in which a pair of vertices has more 
than one edge between them are beyond the scope of this 
paper.  
 
     A graph is said to be a directed graph if its edges (vi, vj) 
are ordered pairs i.e. (vi, vj) is not same as (vj, vi). The first 
vertex is known as the tail of the edge and the second vertex 
is known as the head of the edge. There is an arrow mark on 
the edge (vi, vj) indicating the direction of the edge. In case of 
un-directed graphs, the pair (vi, vj) is un-ordered i.e., it is same 
as (vj, vi) and there is no arrow mark on the edge. This paper 
considers only undirected graphs. 
 
     Degree of a vertex is the total number of edges incident on 
it. For undirected graphs, degree of a vertex is the number of 
 

 

distinct edges that either emanate from or terminate on the 
vertex. 
 
     A path is a sequence of distinct edges between two distinct 
vertices vi and vj in which neither any edge nor any vertex is 
repeated. By definition, every edge is also a path between 
participating vertices. 
 
     A graph is said to be connected graph if there is at least 
one path from every vertex to every other vertex. In other 
words, it is a graph in which we can reach from any vertex to 
any other vertex. We can also use the term spanning graph 
for the purpose. This paper deals with only connected graphs. 
 
     When we write the degrees of all vertices of a graph in the 
form of a sequence of non-negative integers, that sequence is 
referred to as the degree sequence. 
 
     Obtaining the degree sequence of a graph is 
straightforward but the reverse is not as simple. The problem 
could be that the given sequence of integers may not result 
into a connected graph or may not be realizable into a graph 
at all. For example, the degree sequence 1, 2, 3 would 
definitely be impossible to realize into an undirected and 
connected graph without any self-edges.  The sequence of 
non-negative integers that represents the degree sequence of 
an undirected and connected graph is known as the graphic 
sequence. 
 
     To know whether a degree sequence is unique or not, and 
if it is, to know whether it graphic or not, and if it is, to find 
at least one random graph of such a degree sequence is the 
problem of great interest. Such a large collection of random 
graphs would be very useful in testing graph isomorphism 
algorithms. For example, suppose there are three degree 
sequences, (1, 2, 2), (2, 2, 1) and (2, 1, 2). It is obvious that 
all the three are identical sequences (written differently), and 
hence if any one of them is graphic, so would be other two. 
So, basically there are three problems in one i.e. 
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 Given the number of nodes, find out how many 
unique degree sequences are possible and find all of 
them. 

 Given unique degree sequences, find out how many 
of them are graphic and find all such sequences. 

 Given a graphic sequence, find at least one random 
graph to realize the sequence. 

II. RELATED WORK 
Though the degree sequences and graphs thereof have been 
attempted by many but the most important work on 
characterization of graphic sequences is by Erdos and Gallai 
[4]. The degree sequence (d1, d2, ... , dn) is graphic if and only 
if it satisfies the following conditions: 
 

1) The sum of the degrees is even i.e.  
 
              

푑 %2 = 0 

          
        

2) If the sequence is in nonincreasing order then it must 
follow: 

 

푑 ≤ 푘(푘 − 1) + 푚푖푛{푘 , 푑 }, 푓표푟 1 ≤ 푘 ≤ 푛 

 
     We would refer to these conditions in this paper as EG 
condition (1) and EG condition (2). 
 
     Tripathi and Tyagi [5] give a simpler criterion for degree 
sequences to be graphic. 
 
     Many people have given proof of Erdos-Gallai theorem 
but the proof given by Tripathi, Venugopal and West [6] is 
short, constructive and concise. 
 
     Suppose we know that the degree sequence given is 
graphic, then the next problem is to find a simple graph for it. 
Havel did it in 1955 [7] and later independently by Hakimi in 
1962 [8]. The algorithms given by Havel and Hakimi are 
jointly known as Havel-Hakimi theorem / algorithm / method 
etc. 

III. FINDING ALL UNIQUE DEGREE SEQUENCES 
The first problem at hand is to find all unique degree 
sequences that may or may not be graphic for a given number 
of nodes.  Suppose the number of nodes N is 3, then there are 
8 possible degree sequences. They are, (1, 1, 1), (1, 1, 2), (1, 
2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1) and (2, 2, 2). Out of 
these only four are unique. (1, 1, 1) is unique. (1, 1, 2), (1, 2, 
1) and (2, 1, 1) are same i.e., permutations of (1, 1, 2). (1, 2, 
2), (2, 1, 2) and (2, 2, 1) are same i.e., permutations of (1, 2, 
2). Finally, (2, 2, 2) is unique. So we get only 4 unique degree 
sequences out of 8 possible degree sequences for a given 
number of nodes i.e., 3 which is (N – 1)N. It is trivial to show 
that out of these 4, only 3 are graphic as (1, 1, 1) is not 
graphic. 
 

     It is quite obvious that if a degree sequence is graphic, then 
all of its permutations will also be graphic, similarly, if the 
sequence is not graphic then so will be all of its permutations. 
Therefore, it is important to find all unique degree sequences 
for a given number of vertices so that later we can test 
whether a degree sequence is graphic or not. 
 
III.1. UDS: An Algorithm for Unique Degree Sequences 
 
The algorithm UDS heavily depends on two class templates 
(of C++) Digit and myvector [9]. Though these classes are 
generic, only their integer form is used. In algorithm 1, Digit 
is a class which has three attributes, value which is an integer 
representing the degree of corresponding vertex, 
lower_bound which represents the integer below which the 
value cannot go and upper_bound above which the value 
cannot go. 
 
     The names of the functions are self-explanatory. The 
algorithm is invoked with a vector of length N where N is the 
number of vertices and this vector is initialized with the 
degree sequence (1, 1, …, 1) with N 1s. The algorithm is 
repeated until the output is a vector of length N with the 
degree sequence (N – 1, N – 1, …, N – 1). 
  
Algorithm 1 UDS: An Algorithm for Unique Degree 
Sequences 
Input: N (the number of vertices/nodes), vector = the degree 
sequence to start with 
Output: vector = next unique degree sequence 
1: size = number of vertices 
2: vector = a vector of objects of class Digit of length size 
3: adjust = false 
4: change_flag = false 
5: d = object of class Digit which is at the end of vector 
6: d++ 
7: vector[size-1] = d 
8: if (d.GetValue() = = d.GetLowerBound()) then 
9:   change_flag = true 

10:   Adjust = true 
11: end if 
12: for (i = size-2; i ≥ 0 && change_flag = = true; i- -) do 
13:   d = vector[i] 
14:   d++ 
15:   vector[i] = d 
16:   if (d.GetValue() = = d.GetLowerBound()) then 
17:     change_flag = true 
18:   else 
19:      change_flag = false 
20:   end if 
21:  end for 
22:  maxvalue = an object of class Digit 
23:  if (adjust) then  
24:    maxindex = index of the biggest element of vector 
25:    maxvalue.SetValue(maxvalue.GetValue()) 
26:    for (i = maxindex+1; i < size; i++) do 
27:       vector[i].SetValue(maxvalue.GetValue()) 
28:     end for 
29: end if 
30: return vector // The next unique degree sequence 
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Table captions appear centered above the table in upper and 
lower case letters. When referring to a table in the text, no 
abbreviation is used and "Table" is capitalized. 

IV. FINDING ALL GRAPHIC SEQUENCES 
After finding all unique degree sequences for a given number 
of vertices, the next problem is to find all possible unique 
degree sequences that are graphic. The EG condition 2 given 
in Equation (2) is a bit difficult to understand and implement. 
It also does not guarantee that if a sequence passes both EG 
condition (1) and EG condition (2) then it would be graphic. 
For example, the degree sequence (1, 1, 1, 1) passes the first 
condition that sum of degrees is even, here it is 1+1+1+1 = 4. 
The min() function of EG condition (2) will always result in 
1 as the minimum value of k is 1 and all degrees in the 
sequence under consideration are 1. 
 
     The values of k will be 1, 2, 3 and 4. It is to be noted that 
for second sum in EG condition (2), the value of k = 4 results 
in i = 5 whereas d_5 is not defined. Therefore, the maximum 
value of k cannot be n. So, for correct understanding, the 
range of k must be mentioned in EG condition (2) as 1 ≤ k < 
n. 
 
     Now, for k = 1; EG condition (2) results in  

1 ≤ 1×0 + (1+1+1) i.e. 1 ≤ 3 
for k = 2; 

(1+1) ≤ 2×(2-1) + (1+1) i.e. 2 ≤ 4 
and finally for  k = 3; 

(1+1+1) ≤ 3×(3-1) + (1) i.e. 3 ≤ 7. 
It means that the degree sequence (1, 1, 1, 1) passes both the 
tests but we cannot construct an undirected graph from it. Fig. 
1 shows an undirected graph that has the degree sequence (1, 
1, 1, 1) and satisfies both the EG conditions and still not 
connected. 
                                    
                                   v1                            v3    
    
 
                          v0                     v2     

 
 
 
IV.1. Potentially Connected Degree Sequence 
We know that Erdos-Gallai algorithm does not guarantee the 
connectedness of graph resulting from corresponding degree 
sequence. Algorithm 2 checks whether the degree sequence 
input is potentially connected or not. By potentially 
connected we mean that the degree sequence passes various 
tests. Algorithm 2 also does not guarantee the connectedness 
but it tests for more conditions on the degree sequence. 
 
     The algorithm returns true if the degree sequence is 
potentially connected else it returns false. 
 
Algorithm 2 PCDS: An Algorithm for Potentially Connected 
Degree Sequence 
 
Input: vect = the degree sequence in nondecreasing order 
Output: true or false 

1: sum = Sum of degrees of vect 
2: size = length of vect 
3: if (vect[size-1] ≥ size) then  
4:   return  false 
5: end if 
6: if (sum % 2 != 0 || sum < 2*(size-1))  then  
7:   return  false 
8: end if 
9: max_degree = number of times degree is (size-1) in vect 

10: if (max_degree = = 2 && size = = 2) then  
11:   return true 
12: end if  
13: if (max_degree = = size) then 
14:   return true 
15: end if 
16: if (max_degree > 0 && vect[0] < max_degree) then 
17:   return false 
18: end if 
19: return true 

 
IV.2. Finding All Graphic Sequences 
We know that Havel-Hakimi algorithm can be used to obtain 
a simple graph if the given degree sequence is known to be 
graphic. Algorithm 3 depicts an algorithm that tests whether 
the potentially connected degree sequence is graphic or not 
by constructing an adjacency list representation of the graph 
of the degree sequence. If the adjacency list is empty then that 
means the degree sequence is not graphic. 
 
Algorithm 3 GS: An Algorithm for Obtaining a Graphic 
Sequence 
      
Input: vector<node> wnl. It is potentially connected degree 
sequence in nondecreasing order of degrees 
Output: adjacency_list. It is the representation of the graphic 
sequence 

1: node wn1, wn2 
2: graph_node tgn 
3: vector<node> tnl 
4: while (wnl is not empty) do 
5:   wn1 = head of wnl 
6: tgn.label = wn1.label 
7: remove and delete head of wnl 
8: if (wn1.degree > size of wnl) then 
9:   delete all elements of adjacency_list 

10:   return adjacency_list 
11: end if 
12: while (wn1.degree) do 
13:   wn2 = tail of wnl 
14:   delete tail of wnl 
15:   decrement degree of wn2 by 1 
16:   add wn2 to the tail of list_of_nodes of tgn 
17:   decrement degree of wn1 by 1 
18:     if (degree of wn2 not equal to 0) then 
19:       add wn2 to the tail of tnl 
20:     end if        
21:   end while 
22:   add tgn to the tail of adjacency_list 
23:   delete all elements of list_of_nodes of tgn 
24:   add tnl at the end of wnl 

Figure 1: Disconnected graph passing Erdos-Gallai tests 
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25:   delete all elements of tnl 
26:   sort wnl on degrees 
27: end while 
28: return adjacency_list 

 
 
     A node is a structure that has a label and its degree. It looks 
like as given in Fig. 2. The adjacency_list is a vector of 
graph_node, which looks like as shown in Fig. 2. An example 
of a five node connected graph is given in Fig. 3 and its 
corresponding adjacency list is given in Fig. 4. 
 
                    struct node 
                    { 
                       string label; 
                       int degree; 
                     }; 
 
                    struct graph_node 
                    { 
                       string label;  
                       vector<node> list_of_nodes; 
                     }; 

 
  
 
                        v0                   v1 
 
                                                                v4 

                        v2                  v3 

 
 

 
 
            v4(1)                     v1(4) 
 
            v2(2)                     v0(3)   v1(4) 
             
            v3(2)                     v0(3)   v1(4)  
 
            v0(3)                     v2(2)   v3(2)   v1(4) 
             
            v1(4)                     v4(1)   v2(2)   v3(2)   v0(3)  
 
 
 
 
     It is to be noted that in the adjacency list of Fig.4 4, v4 is 
at index 0 of the vector, v2 at index 1 and so on. This algorithm 
has an advantage that if the degree sequence input is graphic 
then it produces an adjacency list of it also whereas in case of 
Erdos-Gallai algorithm it only tells whether the sequence is 
graphic or not that too without any guarantee. 
     For example, Algorithm 1 was used to generate a unique 
degree sequence (1, 2, 2, 3, 4). This sequence passed the test 
of Algorithm 2 and then it was applied to Algorithm 3 as input 
which resulted in the adjacency list of Fig.4 whose graph 
depiction is in Fig. 3. 
 
V. GENERATING RANDOM GRAPHS 

To generate random connected graphs, we can use Algorithm 
3 with minor modifications. In step number 5, instead of head 
of the list, generate a random integer number in closed 
interval [0, n-2] and use it as index into wnl. If size of the 
degree sequence is n, then the last index of wnl would be (n – 
1) which must not be the location of wn1 as the highest degree 
term would be at the end. 

     In step number 7, remove and delete element at index 
generated in step 5. 

     Obviously, for small (in length) degree sequence, there 
will be less options for random graphs. With each iteration of 
while loop of step 4, the node removed would be random and 
its range would be [0, n – 2] for current shape and size of wnl. 
With each iteration of this while loop, the length of wnl would 
decrease by 1. 

VI. EXPERIMENTAL RESULTS 

All the three algorithms presented in this paper were 
implemented using C++ language and were compiled using 
g++ under Ubuntu 20.04 LTS. Two different machines were 
used for the experimentation 

1) Intel Core 4th generation i5 – 4690T @2.50 GHz, no 
hyperthreading => so 4 cores. 8 GB RAM, 6144 KB 
Cache. 

2) Intel Xeon W – 2155, @3.30 GHz, 10 cores, 
hyperthreading => so 20 cores, 64 GB RAM, 14080 
KB Cache. 

     For testing Algorithm 1, only first machine was used. The 
program was executed 10 times for each number of nodes 
from 1 through 20 and the results were recorded. The average 
of all 10 iterations are given in Table 1. 
 

Table 1: Unique Degree Sequences (Time in seconds). 

Nodes Sequences Time Nodes Sequences Time 
1 1 0 11 167960 0.01821 
2 1 0 12 646646 0.05917 
3 4 5e-06 13 2496144 0.19969 
4 15 9e-06 14 9657700 0.78440 
5 56 2e-05 15 37442160 3.01379 
6 210 4.4e-05 16 145422675 11.9661 
7 792 7.3e-05 17 565722720 48.1107 
8 3003 0.00083 18 2203961430 190.614 
9 11440 0.00299 19 8597496600 756.847 

10 43758 0.00667 20 33578000610 3047.64 

     Erdos-Gallai algorithm for nondecreasing sequences and 
Algorithm 3 were executed on both machines. The averages 
of 10 iterations are given in Table 2 and Table 3. For small 
number of nodes i.e. up to 8 nodes, performance of both the 
algorithms are almost same. From 8 nodes onwards 
Algorithm 3 outperforms Erdos-Gallai algorithm. As the 
number of nodes further increases, the difference in 
performance is even more significant.  

Figure 2: Structure of node and graph_node 

Figure 3: An example of a connected graph 

Figure 4: Adjacency list of graph of Fig. 3 
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     I have tested these algorithms on 23 different hardware 
configurations with same operating system and compiler and 
in each case the trend is same except time in seconds. On all 
machines from 8 nodes onwards Algorithm 3 outperforms 
Erdos-Gallai. 

 
Table 2: Time taken by Algorithm 3 and Erdos-Gallai algorithm on 
machine 1. Time in seconds. 

Nodes Graphic Sequences Algorithm 3 Erdos-Gallai 
2 1 5.2e-05 6e-06 
3 2 6.3e-05 1.4e-05 
4 6 0.00012 6e-05 
5 19 0.000887 0.000782 
6 68 0.008733 0.004152 
7 236 0.066023 0.065221 
8 863 1.23314 1.31442 
9 3133 33.6472 36.4811 

10 11636 896.286 970.565 
11 43306 26500.7 28875.0 

 
Table 3: Time taken by Algorithm 3 and Erdos-Gallai algorithm on 
machine 2. Time in seconds. 

Nodes Graphic Sequences Algorithm 3 Erdos-Gallai 
2 1 4e-05 4e-06 
3 2 4.6e-05 9e-05 
4 6 0.000104 5.1e-05 
5 19 0.000482 0.000419 
6 68 0.006042 0.006024 
7 236 0.05979 0.053845 
8 863 1.15867 1.19833 
9 3133 30.7943 32.419 

10 11636 821.43 876.951 
11 43306 18127.4 21312.5 

VII. CONCLUSION 

Three algorithms related to graphic sequences are presented 
in this paper. Algorithm 1 generates all unique degree 
sequences for a given number of vertices. Algorithm 2tests 
whether the degree sequence input is potentially connected or 
not. It is better than Erdos-Gallai algorithm in testing the 
connectivity. Finally, Algorithm 3 presents the case of 
obtaining graphic sequences as well as their adjacency list 
representation in far too less time as compared to the Erdos-
Gallai algorithm. 

     The algorithms were tested up to 11 nodes on different 
hardware to support the claim. The algorithms can be easily 
used for generating simple random connected graphs. This 
work will definitely be very helpful in graph isomorphism 
problems. 
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