
Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5781 - 5785 (2023) ISSN: 0975-0290

5781

 Finding All Graphic Sequences and Generating
Random Graphs

Brijendra Kumar Joshi
Indore Institute of Science and Technology, Indore - 453331

Email: brijendrajoshi@yahoo.com

--ABSTRACT--
Graphs are basic requirement of research in many fields like electrical circuits, computer networks, Genome
sequencing, traffic flow, compiler design and cryptography to name a few. There are three fundamental issues one has
to address in respect of an undirected graph. First, given a number of nodes, how many unique degree sequences can
be there to handle? Second, out of these unique degree sequences, how many are graphic? And third, how to generate
random graphs for a degree sequence? This paper presents working solutions for all these issues. An efficient algorithm
to find all unique degree sequences for a given number of nodes is presented. An algorithm based on Havel-Kasami
algorithm is presented which is more efficient than Erdos-Gallai algorithm to test the connectivity. Finally, an
algorithm to generate random graphs is also presented.

Keywords – Adjacency list, connected graph, degree sequence, Erdos-Gallai, Havel-Kasami.

Date of Submission: April 30, 2023 Date of Acceptance: June 03, 2023

I. INTRODUCTION

The first proven application of graphs dates back to as early
as 1736. It was Euler who used graphs to solve the classical
Kownigsberg bridge problem. Since then, the applications of
graphs have exploded exponentially in number. It would not
be an exaggeration to say that among all mathematical
structures, graphs are most cited and used. Deo [1] and
Harary [2] have given excellent treatment to the subject of
graphs. One can refer to Choudham [3] for a very basic
treatment.

 Formally, a graph G can be defined as an ordered pair (V,
E) i.e., G = (V, E) where V is a finite set of vertices or nodes
or points and E is a set of edges or arcs. More formally,

V = {v0, v1, …., vn-1}, 1 ≤ |V | < ∞

and

E = {(vi, vj): vi, vj ∈ V and i ≠ j}, 0 ≤ |E | < ∞

 Here, |V| and |E| mean the number of elements in
respective sets. If i = j then the edge is called a self-loop. Such
graphs and the graphs in which a pair of vertices has more
than one edge between them are beyond the scope of this
paper.

 A graph is said to be a directed graph if its edges (vi, vj)
are ordered pairs i.e. (vi, vj) is not same as (vj, vi). The first
vertex is known as the tail of the edge and the second vertex
is known as the head of the edge. There is an arrow mark on
the edge (vi, vj) indicating the direction of the edge. In case of
un-directed graphs, the pair (vi, vj) is un-ordered i.e., it is same
as (vj, vi) and there is no arrow mark on the edge. This paper
considers only undirected graphs.

 Degree of a vertex is the total number of edges incident on
it. For undirected graphs, degree of a vertex is the number of

distinct edges that either emanate from or terminate on the
vertex.

 A path is a sequence of distinct edges between two distinct
vertices vi and vj in which neither any edge nor any vertex is
repeated. By definition, every edge is also a path between
participating vertices.

 A graph is said to be connected graph if there is at least
one path from every vertex to every other vertex. In other
words, it is a graph in which we can reach from any vertex to
any other vertex. We can also use the term spanning graph
for the purpose. This paper deals with only connected graphs.

 When we write the degrees of all vertices of a graph in the
form of a sequence of non-negative integers, that sequence is
referred to as the degree sequence.

 Obtaining the degree sequence of a graph is
straightforward but the reverse is not as simple. The problem
could be that the given sequence of integers may not result
into a connected graph or may not be realizable into a graph
at all. For example, the degree sequence 1, 2, 3 would
definitely be impossible to realize into an undirected and
connected graph without any self-edges. The sequence of
non-negative integers that represents the degree sequence of
an undirected and connected graph is known as the graphic
sequence.

 To know whether a degree sequence is unique or not, and
if it is, to know whether it graphic or not, and if it is, to find
at least one random graph of such a degree sequence is the
problem of great interest. Such a large collection of random
graphs would be very useful in testing graph isomorphism
algorithms. For example, suppose there are three degree
sequences, (1, 2, 2), (2, 2, 1) and (2, 1, 2). It is obvious that
all the three are identical sequences (written differently), and
hence if any one of them is graphic, so would be other two.
So, basically there are three problems in one i.e.

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5781 - 5785 (2023) ISSN: 0975-0290

5782

 Given the number of nodes, find out how many
unique degree sequences are possible and find all of
them.

 Given unique degree sequences, find out how many
of them are graphic and find all such sequences.

 Given a graphic sequence, find at least one random
graph to realize the sequence.

II. RELATED WORK
Though the degree sequences and graphs thereof have been
attempted by many but the most important work on
characterization of graphic sequences is by Erdos and Gallai
[4]. The degree sequence (d1, d2, ... , dn) is graphic if and only
if it satisfies the following conditions:

1) The sum of the degrees is even i.e.

푑 %2 = 0

2) If the sequence is in nonincreasing order then it must
follow:

푑 ≤ 푘(푘 − 1) + 푚푖푛{푘 , 푑 }, 푓표푟 1 ≤ 푘 ≤ 푛

 We would refer to these conditions in this paper as EG
condition (1) and EG condition (2).

 Tripathi and Tyagi [5] give a simpler criterion for degree
sequences to be graphic.

 Many people have given proof of Erdos-Gallai theorem
but the proof given by Tripathi, Venugopal and West [6] is
short, constructive and concise.

 Suppose we know that the degree sequence given is
graphic, then the next problem is to find a simple graph for it.
Havel did it in 1955 [7] and later independently by Hakimi in
1962 [8]. The algorithms given by Havel and Hakimi are
jointly known as Havel-Hakimi theorem / algorithm / method
etc.

III. FINDING ALL UNIQUE DEGREE SEQUENCES
The first problem at hand is to find all unique degree
sequences that may or may not be graphic for a given number
of nodes. Suppose the number of nodes N is 3, then there are
8 possible degree sequences. They are, (1, 1, 1), (1, 1, 2), (1,
2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1) and (2, 2, 2). Out of
these only four are unique. (1, 1, 1) is unique. (1, 1, 2), (1, 2,
1) and (2, 1, 1) are same i.e., permutations of (1, 1, 2). (1, 2,
2), (2, 1, 2) and (2, 2, 1) are same i.e., permutations of (1, 2,
2). Finally, (2, 2, 2) is unique. So we get only 4 unique degree
sequences out of 8 possible degree sequences for a given
number of nodes i.e., 3 which is (N – 1)N. It is trivial to show
that out of these 4, only 3 are graphic as (1, 1, 1) is not
graphic.

 It is quite obvious that if a degree sequence is graphic, then
all of its permutations will also be graphic, similarly, if the
sequence is not graphic then so will be all of its permutations.
Therefore, it is important to find all unique degree sequences
for a given number of vertices so that later we can test
whether a degree sequence is graphic or not.

III.1. UDS: An Algorithm for Unique Degree Sequences

The algorithm UDS heavily depends on two class templates
(of C++) Digit and myvector [9]. Though these classes are
generic, only their integer form is used. In algorithm 1, Digit
is a class which has three attributes, value which is an integer
representing the degree of corresponding vertex,
lower_bound which represents the integer below which the
value cannot go and upper_bound above which the value
cannot go.

 The names of the functions are self-explanatory. The
algorithm is invoked with a vector of length N where N is the
number of vertices and this vector is initialized with the
degree sequence (1, 1, …, 1) with N 1s. The algorithm is
repeated until the output is a vector of length N with the
degree sequence (N – 1, N – 1, …, N – 1).

Algorithm 1 UDS: An Algorithm for Unique Degree
Sequences
Input: N (the number of vertices/nodes), vector = the degree
sequence to start with
Output: vector = next unique degree sequence
1: size = number of vertices
2: vector = a vector of objects of class Digit of length size
3: adjust = false
4: change_flag = false
5: d = object of class Digit which is at the end of vector
6: d++
7: vector[size-1] = d
8: if (d.GetValue() = = d.GetLowerBound()) then
9: change_flag = true

10: Adjust = true
11: end if
12: for (i = size-2; i ≥ 0 && change_flag = = true; i- -) do
13: d = vector[i]
14: d++
15: vector[i] = d
16: if (d.GetValue() = = d.GetLowerBound()) then
17: change_flag = true
18: else
19: change_flag = false
20: end if
21: end for
22: maxvalue = an object of class Digit
23: if (adjust) then
24: maxindex = index of the biggest element of vector
25: maxvalue.SetValue(maxvalue.GetValue())
26: for (i = maxindex+1; i < size; i++) do
27: vector[i].SetValue(maxvalue.GetValue())
28: end for
29: end if
30: return vector // The next unique degree sequence

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5781 - 5785 (2023) ISSN: 0975-0290

5783

Table captions appear centered above the table in upper and
lower case letters. When referring to a table in the text, no
abbreviation is used and "Table" is capitalized.

IV. FINDING ALL GRAPHIC SEQUENCES
After finding all unique degree sequences for a given number
of vertices, the next problem is to find all possible unique
degree sequences that are graphic. The EG condition 2 given
in Equation (2) is a bit difficult to understand and implement.
It also does not guarantee that if a sequence passes both EG
condition (1) and EG condition (2) then it would be graphic.
For example, the degree sequence (1, 1, 1, 1) passes the first
condition that sum of degrees is even, here it is 1+1+1+1 = 4.
The min() function of EG condition (2) will always result in
1 as the minimum value of k is 1 and all degrees in the
sequence under consideration are 1.

 The values of k will be 1, 2, 3 and 4. It is to be noted that
for second sum in EG condition (2), the value of k = 4 results
in i = 5 whereas d_5 is not defined. Therefore, the maximum
value of k cannot be n. So, for correct understanding, the
range of k must be mentioned in EG condition (2) as 1 ≤ k <
n.

 Now, for k = 1; EG condition (2) results in

1 ≤ 1×0 + (1+1+1) i.e. 1 ≤ 3
for k = 2;

(1+1) ≤ 2×(2-1) + (1+1) i.e. 2 ≤ 4
and finally for k = 3;

(1+1+1) ≤ 3×(3-1) + (1) i.e. 3 ≤ 7.
It means that the degree sequence (1, 1, 1, 1) passes both the
tests but we cannot construct an undirected graph from it. Fig.
1 shows an undirected graph that has the degree sequence (1,
1, 1, 1) and satisfies both the EG conditions and still not
connected.

 v1 v3

 v0 v2

IV.1. Potentially Connected Degree Sequence
We know that Erdos-Gallai algorithm does not guarantee the
connectedness of graph resulting from corresponding degree
sequence. Algorithm 2 checks whether the degree sequence
input is potentially connected or not. By potentially
connected we mean that the degree sequence passes various
tests. Algorithm 2 also does not guarantee the connectedness
but it tests for more conditions on the degree sequence.

 The algorithm returns true if the degree sequence is
potentially connected else it returns false.

Algorithm 2 PCDS: An Algorithm for Potentially Connected
Degree Sequence

Input: vect = the degree sequence in nondecreasing order
Output: true or false

1: sum = Sum of degrees of vect
2: size = length of vect
3: if (vect[size-1] ≥ size) then
4: return false
5: end if
6: if (sum % 2 != 0 || sum < 2*(size-1)) then
7: return false
8: end if
9: max_degree = number of times degree is (size-1) in vect

10: if (max_degree = = 2 && size = = 2) then
11: return true
12: end if
13: if (max_degree = = size) then
14: return true
15: end if
16: if (max_degree > 0 && vect[0] < max_degree) then
17: return false
18: end if
19: return true

IV.2. Finding All Graphic Sequences
We know that Havel-Hakimi algorithm can be used to obtain
a simple graph if the given degree sequence is known to be
graphic. Algorithm 3 depicts an algorithm that tests whether
the potentially connected degree sequence is graphic or not
by constructing an adjacency list representation of the graph
of the degree sequence. If the adjacency list is empty then that
means the degree sequence is not graphic.

Algorithm 3 GS: An Algorithm for Obtaining a Graphic
Sequence

Input: vector<node> wnl. It is potentially connected degree
sequence in nondecreasing order of degrees
Output: adjacency_list. It is the representation of the graphic
sequence

1: node wn1, wn2
2: graph_node tgn
3: vector<node> tnl
4: while (wnl is not empty) do
5: wn1 = head of wnl
6: tgn.label = wn1.label
7: remove and delete head of wnl
8: if (wn1.degree > size of wnl) then
9: delete all elements of adjacency_list

10: return adjacency_list
11: end if
12: while (wn1.degree) do
13: wn2 = tail of wnl
14: delete tail of wnl
15: decrement degree of wn2 by 1
16: add wn2 to the tail of list_of_nodes of tgn
17: decrement degree of wn1 by 1
18: if (degree of wn2 not equal to 0) then
19: add wn2 to the tail of tnl
20: end if
21: end while
22: add tgn to the tail of adjacency_list
23: delete all elements of list_of_nodes of tgn
24: add tnl at the end of wnl

Figure 1: Disconnected graph passing Erdos-Gallai tests

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5781 - 5785 (2023) ISSN: 0975-0290

5784

25: delete all elements of tnl
26: sort wnl on degrees
27: end while
28: return adjacency_list

 A node is a structure that has a label and its degree. It looks
like as given in Fig. 2. The adjacency_list is a vector of
graph_node, which looks like as shown in Fig. 2. An example
of a five node connected graph is given in Fig. 3 and its
corresponding adjacency list is given in Fig. 4.

 struct node
 {
 string label;
 int degree;
 };

 struct graph_node
 {
 string label;
 vector<node> list_of_nodes;
 };

 v0 v1

 v4

 v2 v3

 v4(1) v1(4)

 v2(2) v0(3) v1(4)

 v3(2) v0(3) v1(4)

 v0(3) v2(2) v3(2) v1(4)

 v1(4) v4(1) v2(2) v3(2) v0(3)

 It is to be noted that in the adjacency list of Fig.4 4, v4 is
at index 0 of the vector, v2 at index 1 and so on. This algorithm
has an advantage that if the degree sequence input is graphic
then it produces an adjacency list of it also whereas in case of
Erdos-Gallai algorithm it only tells whether the sequence is
graphic or not that too without any guarantee.
 For example, Algorithm 1 was used to generate a unique
degree sequence (1, 2, 2, 3, 4). This sequence passed the test
of Algorithm 2 and then it was applied to Algorithm 3 as input
which resulted in the adjacency list of Fig.4 whose graph
depiction is in Fig. 3.

V. GENERATING RANDOM GRAPHS

To generate random connected graphs, we can use Algorithm
3 with minor modifications. In step number 5, instead of head
of the list, generate a random integer number in closed
interval [0, n-2] and use it as index into wnl. If size of the
degree sequence is n, then the last index of wnl would be (n –
1) which must not be the location of wn1 as the highest degree
term would be at the end.

 In step number 7, remove and delete element at index
generated in step 5.

 Obviously, for small (in length) degree sequence, there
will be less options for random graphs. With each iteration of
while loop of step 4, the node removed would be random and
its range would be [0, n – 2] for current shape and size of wnl.
With each iteration of this while loop, the length of wnl would
decrease by 1.

VI. EXPERIMENTAL RESULTS

All the three algorithms presented in this paper were
implemented using C++ language and were compiled using
g++ under Ubuntu 20.04 LTS. Two different machines were
used for the experimentation

1) Intel Core 4th generation i5 – 4690T @2.50 GHz, no
hyperthreading => so 4 cores. 8 GB RAM, 6144 KB
Cache.

2) Intel Xeon W – 2155, @3.30 GHz, 10 cores,
hyperthreading => so 20 cores, 64 GB RAM, 14080
KB Cache.

 For testing Algorithm 1, only first machine was used. The
program was executed 10 times for each number of nodes
from 1 through 20 and the results were recorded. The average
of all 10 iterations are given in Table 1.

Table 1: Unique Degree Sequences (Time in seconds).

Nodes Sequences Time Nodes Sequences Time
1 1 0 11 167960 0.01821
2 1 0 12 646646 0.05917
3 4 5e-06 13 2496144 0.19969
4 15 9e-06 14 9657700 0.78440
5 56 2e-05 15 37442160 3.01379
6 210 4.4e-05 16 145422675 11.9661
7 792 7.3e-05 17 565722720 48.1107
8 3003 0.00083 18 2203961430 190.614
9 11440 0.00299 19 8597496600 756.847

10 43758 0.00667 20 33578000610 3047.64

 Erdos-Gallai algorithm for nondecreasing sequences and
Algorithm 3 were executed on both machines. The averages
of 10 iterations are given in Table 2 and Table 3. For small
number of nodes i.e. up to 8 nodes, performance of both the
algorithms are almost same. From 8 nodes onwards
Algorithm 3 outperforms Erdos-Gallai algorithm. As the
number of nodes further increases, the difference in
performance is even more significant.

Figure 2: Structure of node and graph_node

Figure 3: An example of a connected graph

Figure 4: Adjacency list of graph of Fig. 3

Int. J. Advanced Networking and Applications
Volume: 15 Issue: 01 Pages: 5781 - 5785 (2023) ISSN: 0975-0290

5785

 I have tested these algorithms on 23 different hardware
configurations with same operating system and compiler and
in each case the trend is same except time in seconds. On all
machines from 8 nodes onwards Algorithm 3 outperforms
Erdos-Gallai.

Table 2: Time taken by Algorithm 3 and Erdos-Gallai algorithm on
machine 1. Time in seconds.

Nodes Graphic Sequences Algorithm 3 Erdos-Gallai
2 1 5.2e-05 6e-06
3 2 6.3e-05 1.4e-05
4 6 0.00012 6e-05
5 19 0.000887 0.000782
6 68 0.008733 0.004152
7 236 0.066023 0.065221
8 863 1.23314 1.31442
9 3133 33.6472 36.4811

10 11636 896.286 970.565
11 43306 26500.7 28875.0

Table 3: Time taken by Algorithm 3 and Erdos-Gallai algorithm on
machine 2. Time in seconds.

Nodes Graphic Sequences Algorithm 3 Erdos-Gallai
2 1 4e-05 4e-06
3 2 4.6e-05 9e-05
4 6 0.000104 5.1e-05
5 19 0.000482 0.000419
6 68 0.006042 0.006024
7 236 0.05979 0.053845
8 863 1.15867 1.19833
9 3133 30.7943 32.419

10 11636 821.43 876.951
11 43306 18127.4 21312.5

VII. CONCLUSION

Three algorithms related to graphic sequences are presented
in this paper. Algorithm 1 generates all unique degree
sequences for a given number of vertices. Algorithm 2tests
whether the degree sequence input is potentially connected or
not. It is better than Erdos-Gallai algorithm in testing the
connectivity. Finally, Algorithm 3 presents the case of
obtaining graphic sequences as well as their adjacency list
representation in far too less time as compared to the Erdos-
Gallai algorithm.

 The algorithms were tested up to 11 nodes on different
hardware to support the claim. The algorithms can be easily
used for generating simple random connected graphs. This
work will definitely be very helpful in graph isomorphism
problems.

REFERENCES
[1] N. Deo, Graph Theory with Applications to Engineering

and Computer Science (New Delhi: Prentice-Hall of
India, 1974).

[2] F. Harary, Graph Theory (New Delhi: Narosa Publishing
House, 1987).

[3] S. A. Choudham, A First Course in Graph Theory
(Madras: MacMillan India, 1987).

[4] P. Erdos and T. Gallai, Graphs with prescribed degrees
of vertices, Mat. Lapok, 11, 1960, 264-274.

[5] A. Tripathi and H. Tyagi, A simple criterion on degrees
of vertices, Discrete Applied Mathematics, 156, 2008,
3516-3517.

[6] A. Tripathi, S. Venugopalan, and D. B. West, A short
constructive proof of the Erdos-Gallai characterization of
graphic lists, Discrete Mathematics, 310, 2010, 843-844.

[7] V. Havel, A remark on existence of finite graphs,
Casopis propestovani matematiky (in Czech), 80, 1955,
477-480.1962, 496-506.

[8] S. L. Hakimi, On the realizability of a set of integers as
degrees of the vertices of a graph, SIAM Journal on
Applied Mathematics, 10, 1962, 496-506.

[9] B. K. Joshi, Digit and Vector classes for graph
applications, unpublished.

Author Biography
Dr Brijendra Kumar Joshi is currently working as Professor
and Dean (Academics) at Indore Institute of Science and
Technology, Indore. He retired as Professor of Electronics &
Telecommunication and Computer Engineering at Military
College of Telecommunication Engineering, MHOW (MP),
India. He obtained BE in Electronics and Telecommunication
Engineering from Govt Engineering College, Jabalpur; ME
in Computer Science and Engineering from IISc, Bangalore,
PhD in Electronics and Telecommunication Engineering
from Rani Durgavati University, Jabalpur, and MTech in
Digital Communication from MANIT, Bhopal. He has more
than 38 years of teaching experience. His research interests
are programming languages, compiler design, digital
communications, mobile ad-hoc and wireless sensor
networks, image processing, software engineering and formal
methods. He has number of research publications to his
credit. He has supervised 12 Ph D theses and currently
supervising 2 research scholars. He has authored two books
on Data Structures and Algorithms in C/C++ published by
Tata McGraw-Hill, New Delhi.

