ABSTRACT
Many research works have already been done for congestion control and resource management in ATM networks using
static and dynamic algorithms. However, no comprehensive scheme has been suggested, which can claim optimized the
resource allocations fulfilling the requirements of quality of services (QoS) for existing and incoming sources. The
paper suggests a new approach, which would make the dynamic allocation of resources by controlling the input rate (l),
output/server rate (m) and buffer size (c) individually or in conjunction. The newly proposed approach with dynamical
allocation of resources is much more comprehensive in nature and claims a shorter convergence time than the other
previously suggested schemes based on similar dynamic allocation principle. In this paper we describe an Adaptive
Rate Control (ARC) implemented to improve the performance of high-speed network to handle burst traffic by
guaranteeing the cell loss ratio (CLR) for all cell streams. First, the cases in which a Tahoe, Reno, New Reno, SACK
and Plain schemes are applicable in peak-cell-rate (PCR) are discussed. The ARC improves the performance by
regulating the increment (up) and the decrease (down) of window size (flow control). Incoming traffic rate, number of
cell drop, preset size of the window and estimated delay time are taken into account for this regulation. Simulations are
used to investigate how Tahoe, Reno, New Reno, SACK and Plain can conduct, as congestion existed. Then we compare
these results from four schemes to the “Plain” scheme (no flow control application) and to the proposed ARC. By
altering windows size for the mentioned six schemes, we can obtain the supportive results.
Keywords: ARC, Tahoe, Reno, New Reno, SACK, Sliding Windows, ATM network, Quality of Services (QoS), and
Comprehensive Dynamic Control Algorithm.