
Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 40

JOB SHOP SCHEDULING USING

METAHEURESTIC

SEARCH TECHNIC – TABU SEARCH

K.Anandapadmanabhan MCA., M.Phil., Head of Computer Science, Sri Vasavi College,(Self-

FinanceWing),Erode.Mob: 9842895257 E.Mail : apn1975@hotmail.com

Research Scholor, Category – B, BharathiarUniversity Coimbatore.

---ABSTRACT--

ABSTRACT

 Basic Job Shop Scheduling Problem (JSSP) is a static optimization problem, since all information about the

production program is known in advance. General Job shop problem is the probably most studied one by academic research

during the last three decades and is notoriously difficult problem to solve. The JSSP is an NP (Nondeterministic

Polynomial) hard problem and among those optimization problems, it is one of the least tractable known problems (Garey

and Johnson 1979). It is purely deterministic, since processing time and constraints are fixed and no stochastic events occur.

The JSSP also illustrates some of the demands required by a wide array of real world problems. In a shop floor, machines

process jobs and each job contains a certain number of operations. Each operation has its own processing time and has to be

processed on a dedicated machine. Each job has its own machine order and no relation exists between machine orders of any

two jobs. For each job, the machine order of operations is prescribed and is known as technological production recipe or

technological constraints, which are static to a problem instance. Operations to be processed on one machine form an

operation sequence for this machine. Minimum make span feasible schedules are obtained by permuting the processing

order of operations on machines without violating the technological constraints.

Keywords - Disjunctive graph , Job shop scheduling, Optimization, Tabu Search, Tabu Length.

-- -----------------

INTRODUCTION

 Basic Job Shop Scheduling Problem (JSSP) is

a static optimization problem, since all information about

the production program is known in advance. General Job

shop problem is the probably most studied one by academic

research during the last three decades and is notoriously

difficult problem to solve. The JSSP is an NP

(Nondeterministic Polynomial) hard problem and among

those optimization problems, it is one of the least tractable

known problems (Garey and Johnson 1979). It is purely

deterministic, since processing time and

 Constraints are fixed and no stochastic events

occur. The JSSP also illustrates some of the demands

required by a wide array of real world problems. In a shop

floor, machines process jobs and each job contains a certain

number of operations. Each operation has its own

processing time and has to be processed on a dedicated

machine. Each job has its own machine order and no

relation exists between machine orders of any two jobs. For

each job, the machine order of operations is prescribed and

is known as technological production recipe or

technological constraints, which are static to a problem

instance. Operations to be processed on one machine form

an operation sequence for this machine. Minimum make

span feasible schedules are obtained by permuting the

processing order of operations on machines without

violating the technological constraints.

 This paper presented the application of the

Tabu search to solve the job shop scheduling problems. The

goal of the work was to gain some insight into the influence

of dynamic Tabu length strategies. The Tabu length was

changed dynamically during the construction of the

solution. The new dynamic tabu length strategies were used

to prevent the neighbors which keep the solution in local

minima and also used to avoid cycling.

PROBLEM DEFINITION

 Job shop scheduling problem consists of a set

of jobs J = {1 . . n}, a set of machines M = {1 . . m}, where

Ji denotes ith job (1 ≤ i ≤ n) and Mj denotes jth machine (1 ≤

j ≤ m). On the machines M1, M2 … Mm, the jobs J1, J2 … Jn

are to be scheduled. Let V be the set of all operations in all

jobs. Each job Ji has a set of operations oi1, oi2, …oik, where

k is total number of operations in the job Ji. Operation’s

precedence constraints are associated with each job and

ensure that operation oij will be processed only after the

processing of operation oij-1 in a particular job i.

 Generally, standard model of n jobs, m

machines job shop is denoted by n/m//P/Cmax. The

parameter  is technological matrix denoting the processing

order of machines for different jobs. The machine order for

ith job is given by ij (1 ≤ j ≤ m), where j denotes jth

operation in ith job. An example of the technological matrix

 can be represented as follows:

2 3 1

1 2 3

3 1 2

 
 


 
 
 

M M M

M M M

M M M



mailto:apn1975@hotmail.com

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 41

 Each row of the above matrix represents a job.

For first job, first operation is performed on machine M2,

second operation is performed on machine M3 and third

operation is performed on machine M1. Similarly, other jobs

are executed on different machines.

 Matrix P, denoting the processing time of

different operations, is represented as follows:

11 12 13

21 22 23

31 32 33

p p p

P p p p

p p p

 
 


 
 
 

where pij represents time of jth operation of ith job.

 The technological matrix  and the processing

time matrix P are given as problem data. The processing

order (machine sequence) for machine Mi is given by Πik (1

≤ k ≤ n), where k denotes kth operation to be processed on

machine Mi. A solution to JSSP can be represented by a

matrix Π denoting processing orders of all machines. For

instance, one solution of the above problem is considered as

follows:

1 2 3

1 2 3 1

2 1 2 3

3 3 1 2

o o o

M J J J

M J J J

M J J J

 
 

 
 
 
 

 According to the above schedule, first

operation of second job is scheduled on machine M1,

followed by second operation of third job and third

operation of first job. Similarly other machines have

schedules represented in second and third rows. Generally,

subscript values denoting machine numbers in  and job

numbers in Π are given to formulate technological matrix

and matrix representing a solution respectively. Processing

unit of jth operation of ith job on a machine is denoted as oij.

Each operation o has at most two direct predecessor

operations, a job predecessor PJo and a machine predecessor

PMo. First operation of a machine sequence has no PMo, and

first operation of a job has no PJo. Similarly each operation

has at most two direct successor operations, a job successor

SJo and a machine successor SMo. Last operation of a

machine sequence has no SMo and last operation of a job

has no SJo. An operation o is called schedulable, if both, PJo

and PMo are already scheduled.

 Let
ijor be the starting time of jth operation of

ith job. Completion time
ijoC for oij is calculated as in

Equation (1.1)

 ,
ij ijoo ij

rC P 

ijor max(,)
ij PJ PM

ij j

o

io o
r C C (1.1)

ijor are assigned by zero values for undefined
ijoPJ and

ijoPM . After scheduling all operations, the make span

Cmax representing completion time of all operations is

calculated as in Equation (1.2).

Cmax = max (
ijoC) for all oij V

 (1.2)

 Main objective is to minimize Cmax value with

certain restrictions listed as follows:

 No two operations of one job may be

processed simultaneously.

 A machine performs only one job at a

time.

 Once an operation is initiated for

processing, it will not be interrupted

until its completion.

 An operation of a job can not be started

until its previous operations of the same

job are completed

 More than one operations of a job

cannot be processed on a single

machine.

 Jobs must wait for the next machine to

be available.

 Machines may be idle within the

schedule period.

 One job is independent with other jobs.

TABU SEARCH

Memory Concepts of Tabu Search
 TS is based on the premise that problem

solving must incorporate adaptive memory and responsive

exploration. The adaptive memory feature enables TS

approaches to the solution space economically and

effectively. The emphasis on responsive exploration in TS

derives from the fact that a bad strategic choice can yield

more information than a good random choice. Hence, in a

system that uses memory, a bad choice can provide useful

clues about how the strategy, in which the choice is based,

may profitably be changed. Responsive exploration

integrates exploiting good solution features while exploring

new promising regions. TS finds new and more effective

ways of taking advantage of the mechanisms associated

with both adaptive memory and responsive exploration. TS

also employ memory structures to operate in four

dimensions, which are called as recency, frequency, quality

and influence.

 Recency based memory are responsible to

keep track of solution attributes that have changed during

the recent past. Selected attributes, which occur in solutions

recently visited, are labeled as tabu-active and are stored in

tabu list, Frequency based memory maintains number of

times, in which the selected attribute occurs and maintains a

table of frequencies related to that attribute, which may be

regarded as tabu, if its frequency is greater than a given

threshold value (Scrich et al 2004). Diversification can be

achieved using frequency based memory Taillard (1994).

The quality based memory refers to the merit of solutions

visited during the search. This type of memory identifies

elements that are common to good solutions or to paths that

lead to such solutions. Quality enforces incentive-based

learning, in which inducements are provided to reinforce

actions leading to good solutions and penalties are provided

to discourage actions leading to poor solutions. These

memory structures are flexible that allows the search to be

guided in a multi-objective environment, in which more

than one function is used to determine the goodness of a

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 42

particular search direction. The influence based memory

measures the impact of the choices made during the search,

not only on quality but also on structure. An additional level

of learning is incorporated by recording information about

the influence of choices on particular solution elements.

However, it is clear that certain decisions have more

influence than others as a function of the neighborhood of

moves, which are employed and the way, in which this

neighborhood is negotiated.

 Memories in TS are also classified as explicit

memory and attributive memory. Complete solutions

including elite solutions visited during the search are

recorded in explicit memory. Local search can be expanded

by using the memorized elite solutions and their attractive

neighbors. The attributive memory enforces a guiding

method for TS and records information about solution

attributes that change in moving from one solution to

another.

Tabu List

 TS algorithm uses a short-term memory to

escape from local minima. The short-term memory is

implemented as a tabu list, which is used to store forbidden

moves and the use of a tabu list prevents from returning to

recently visited solutions. Therefore, it prevents from

endless cycling and forces the search to accept even uphill-

moves. Length of the tabu list controls the memory of the

search process. With a small tabu length, the search will

concentrate on small areas of the search space, while a large

tabu length forces the search process to explore larger

regions. The tabu length can be varied during the search,

leading to more robust algorithms.

 Implementation of tabu list consisting of

complete solutions is not practical, because of inefficiency

in managing a list having complete solutions. Therefore,

instead of the complete solutions, only the solution

components involved in moves are stored in the tabu list.

Tabu list is usually introduced for each type of solution

component, because different types of move corresponding

to different types of solution components can be considered.

Tabu conditions are defined by different types of solutions

together with the corresponding tabu lists and are used to

filter the neighborhood of a solution and generate the

allowed set.

Aspiration Criteria

 Tabus are sometimes too powerful that they

may prohibit attractive moves, even when there is no danger

of cycling, or they may lead to an overall stagnation of the

searching process. To overcome this problem, aspiration

criteria are defined. The intend of the aspiration criterion is

to avoid bypassing moves, which lead to substantially better

solutions. The aspiration mechanism, in some cases, is used

to protect the search from the possibility that in a given

state, all moves are tabu. In such cases, the aspiration

function is set in such a way that at least one move fulfills

its criterion, and its tabu status is removed. In other cases,

the aspiration mechanism is set in such a way that, if a move

with a big impact on the solution is performed, the tabu

status of other lower-influence moves is dropped. The

simplest and most commonly used aspiration criterion

allows a move, even if it is tabu, if it results in a solution

with an objective value better than that of the current best-

known solution or the old one in tabu at the time, when

existing moves cannot be carried out. Much more

complicated aspiration criteria have been implemented by

different research persons and successfully implemented

(Hertz and de Werra 1991), but they are rarely used.

Variable Length of Tabu List

 Basic role of tabu list is to prevent cycling.

Fixed length tabus cannot prevent cycling (Glover 1989,

Glover 1990). We can observe that if the length of the list

is too small, cycling cannot be prevented and long size tabu

creates many restrictions so as to increase the mean value of

the visited solutions. An effective way of removing this

difficulty is to use a tabu list with variable size according to

the current iteration number. Length of the tabu list is

initially assigned according to size of the problem and it

will be decreased or increased during the construction of

solution so as to achieve better exploration of the search

space. Typically, if better solutions are discovered, the tabu

list is shortened, while tabu list is lengthened when moves

leading to worse solutions are taken. Main assumption

behind this is that when a good solution is found, there may

be more reasonable solutions within a few moves. In this

implementation, when the current solution is better than the

previous one, the tabu list is shortened by one move and

when the current solution is worse than the previous one,

the tabu list is lengthened by one move.

Termination Criteria

 In theory, the search could go on forever,

unless the optimal value of the problem at hand is known

beforehand. In practice, obviously, the search has to be

stopped at some point. The most commonly used stopping

criteria in TS are given as follows:

(i) A fixed number of iterations.

(ii) After some number of iterations without

an improvement in the objective

function value.

(iii) When the objective function reaches a

pre-specified threshold value. That is,

termination procedures are generally

used to stop the iteration process, if the

quality of the procedures has crossed a

certain value.

(iv) A fixed amount of CPU time.

Dynamic Nature of Tabu Search

 Difference between short-term memory and

long-term memory arises an important distinction in TS.

Each type of memory has been accompanied by its own

special strategies. However, modifying the neighborhood

N(S) of the current solution S is the ultimate effect of both

types of memory. The modified neighborhood denoted by

N’(S) maintains a selective history of the states encountered

during the search. Based on short-term memory, N’(S) is a

subset of N(S), and tabu classification is used to serve for

the identification of elements in N’(S), which are excluded

from N(S). TS based on a short-term memory allows a

solution S to be visited more than once, but the

corresponding reduced neighborhood N’(S) will be different

each time. Based on long-term memory, N’(S) may be

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 43

expanded to include solutions not ordinarily found in N(S).

Hence, revisiting previous neighborhood solution making

repeatedly visiting only a limited subset of S does not arise.

The method will identify an optimal or near optimal

solution long before a substantial portion of S is examined.

A Template for Simple Tabu Search

 A template for simple TS is designed by using

elements given in previous sections in this chapter. The

general structure of this template is given below:

 Initialization
 Construct initial solution S*

 Find f(S*)

 Set S* to S

Set f(S*) to f(S)

 Searching

 While termination criterion not satisfied do

 Let k be the total neighbors for S

 Find the solution Si (1≤ i ≤ k)

 Set appropriate Si to S

 If f(S) < f(S*) Then

 Set S to S*

 Set f(S) to f(S*)

 EndIf

 Store current Si to Tabu

 Delete oldest entry in tabu if necessary

 EndWhile

 Output

 Print S* and f(S*)

 Initialization phase finds initial solution S* of

the given problem and corresponding makespan f(S*). This

phase also assigns S* and f(S*) to the current solution S and

f(S) respectively. In the searching phase, the algorithm finds

a set of neighbors for the current solution selects suitable

neighbor and finds the solution of this neighbor. It stores the

best solution and also updates the tabu list. The algorithm

repeats the searching phase until a termination criterion is

met and finally outputs the best solution found.

REFERENCES

[1] Job shop scheduling Benchmark, OR-Library,

http://mscmga.ms.ic.ac.uk/jeb/orlib/jobshopinfo.hitml.

[2] J. P. Watson and J. Christopher Beck, “Problem

Difficulty forTabu Search in Job-Shop Scheduling”,

Elsevier Science, 2002,vol. 21.

[3] J.B. Chambers and J. Wesley Barnes “Solving the Job

Shop Scheduling Problem with Tabu Search” IIE

Transactions, vol.995.

[4] S. G. Ponnambalam, Aravindan P and Rajesh S V, “A

Tabu Search Algorithm for Job Shop Scheduling”,

International Journal of Advanced Manufacturing

Technology, 2000, vol. 16.

[5] F. Geyik and I.H. Cedimoglu, “The Strategies and

Parameters of Tabu Search for Job Shop Scheduling”,

Journal of Intelligent Manufacturing, 2004, vol. 15.

[6] S.Q. Liu, H.L.Ong, and K.M. Ng, “A fast tabu search

algorithm for the group shop scheduling problem”,

Advances in Engineering Software, 2005, vol.36.

[7] Jen-Shiang Chen, Jason Chao-Hsien Pan and Chien-

Kuang Wu ,“Hybrid tabu search for re-entrant permutation

flow-shopscheduling problem”, Expert Systems with

Applications, 2008,vol.34.

