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-------------------------------------------------------------------ABSTRACT---------------------------------------------------- 

The Internet is comprised of a mesh of routers interconnected by links. Communication among nodes on the 

Internet (routers and end-hosts) takes place using the Internet Protocol, commonly known as IP. IP datagrams 

(packets) travel over links from one router to the next on their way towards their final destination. Each router 

performs a forwarding decision on incoming packets to determine the packet’s next-hop router. IP router forwards 

the packets and also chooses to perform special processing on incoming packets. Such special processing requires 

that the router classify incoming packets into one of several flows which is called Packet Classification.  Packet 

Classification may be based on single Dimension or Multidimensional. The Packet classification is based on set of 

rules among which one of them is matched by the incoming packet and the corresponding action is taken.  Decision 

Tree is one of the best datastrcture available to store and find the best matching rules. HiCut, HyperCut, Hypersplit, 

Layered cutting, DimCut, Efficut are some of the packet classification algorithms based on Decision tree Data 

structure. 
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1.  INTRODUCTION 
 A packet-switch in a router must perform 

a forwarding decision on each arriving packet for deciding 

where to send it next. An IP router does this by looking up 

the packet’s destination address in a forwarding table. This 

yields the address of the next-hop router and determines the 

outlet port through which the packet should be sent. This 

lookup operation is called a route lookup or an address 

lookup operation. Second, the packet-switch must transfer 

the packet from the way in to the way out port identified by 

the address lookup operation. This is called switching, and 

also involves physical movement of the bits carried by the 

packet. 

1.1 Architecture of a packet-by-packet router 

 The Packet by packet router consists of one line 

card for each port and a switching fabric (such as a 

crossbar) that interconnects all the line cards. Typically, one 

of the line cards houses a processor functioning as the 

central controller for the router. The path taken by a packet 

through a packet-by-packet router consists of two main 

functions on the packet: (1) performing route lookup based 

on the packet’s destination address to identify the outgoing 

port, and (2) switching the packet to the output port. 

The routing processor in a router performs one or 

more routing protocols such as RIP by exchanging protocol 

messages with neighboring routers. This enables it to 

maintain a routing table that contains a representation of the 

network topology state information and stores the current 

information about the best known paths to destination 

networks. The router typically maintains a version of this 

routing table in all line cards so that lookups on incoming 

packets can be performed locally on each line card, without 

loading the central processor. This version of the central 

processor’s routing table is referred o as the line card’s 

forwarding table because it is directly used for packet 

forwarding.  

 
 

 

1.2 Flow-aware IP router and Packet Classification 

 

One main reason for the existence of flow-aware 

routers stems from an ISP’s desire to have the capability of 

providing differentiated services to its users. Traditionally, 

the Internet provides only a “best-effort” service, treating all 

packets going to the same destination identically, and 

servicing them in a first-come-first-served manner. In order 

to provide differentiated services, routers require additional 

mechanisms. These mechanisms — admission control, 

conditioning (metering, marking, shaping, and policing), 

resource reservation (optional), queue management and fair 

scheduling require, first of all, the capability to distinguish 

and isolate traffic belonging to different users based on 

service agreements negotiated between the ISP and its 

customer. This has led to service agreements, express them 

in terms of rules or policies configured on incoming 

packets, and isolate incoming traffic according to these 

rules. The collection of rules or policies is called a policy 

database, flow classifier, or simply a classifier. Each rule 

specifies a flow that a packet may belong to based on some 

criteria on the contents of the packet header. All packets 

belonging to the same flow are treated in a similar manner. 

The identified flow of an incoming packet specifies an 

action to be applied to the packet. For example, a firewall 
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router may carry out the action of either denying or allowing 

access to a protected network. The determination of this 

action is called packet classification — the capability of 

routers to identify the action associated with the “best” rule 

an incoming packet matches. Packet classification allows 

ISPs to differentiate from their competition and gain 

additional revenue by providing different value-added 

services to different customers. 

 

Flow-aware routers perform a superset of the functions of a 

packet-by-packet router. It consists of four main functions 

on the packet: (1) performing route lookup to identify the 

outgoing port, (2) performing classification to identify the 

flow to which an incoming packet belongs, (3) applying 

theaction (as part of the provisioning of differentiated 

services or some other form of special processing) based on 

the result of classification, and (4) switching to the output 

port.  

 

 
 

1.3 Packet Classification 

 

A packet classifier must compare header fields of 

every incoming packet against a set of rules in order to 

assign a flow identifier. A rule must specify a set of headers 

and the policy to be in use. A Rule Space is a collection of 

rules, specified as a table (flat data base) with, Columns as 

RuleID, ‘D’ header field specification as f1, f2… fd, and an 

Action column. Each record (Row) specifies a rule. Number 

D would be the Dimension of the rule space. Process of 

classification requires, applying the rules from the top. 

Attributes of the packet to be classified are matched with 

values in the Header columns, and if successful the Action 

becomes applicable. For example, a typical IP tables rule 

may specify: A INPUT –p tcp --dport 22 -j ACCEPT.  This 

rule is to be interpreted as “a TCP packet is to be accepted if 

the destination port is equal to 22 “. If no match is found the 

next rule in the table is to be tested. In general the process 

continues sequentially till a match is found. 

 Mathematically, a packet P is said to match a 

particular rule R, if the ith field of the header of P satisfies 

the regular expression R[i], for all 0 ≤ i < F . If a packet P 

matches multiple rules, the matching rule with the highest 

priority is returned. The ith component of rule R referred to 

as R[i], is a regular expression on the ith field of the packet 

header.  When viewed in this way two distinct rules are said 

to either practically overlapping or non-overlapping or that 

one is a subset of the other with corresponding set related 

definition.  Given a classifier C with N rules, Rj, 1 ≤j≤N, 

where Rj consists of three entities: 

i)Range expressions: Rj[i], 1 ≤i≤d, on each of the d header 

fields. 

ii)Priority: pri(Rj), indicating the priority of the rule in the 

classifier. Commonly, 1st policy has the highest priority, Nth 

policy (normally deny all) has the lowest. 

iii)An action: referred to as action(Rj). In firewall, usually 

there is a default policy as the last policy that matches and 

denies all. 

2. Decision Tree based Algorithms 

Decision tree based packet classification 

algorithms focus on two aspects. The first one is how to 

select the cut dimension and the second is how to decide the 

cut-point for dividing address space into subspaces. There 

are two major methods to pick up the cut dimension: select 

a single cut dimension one at a time or select multiple cut 

dimensions at a time. When choosing a single cut 

dimension, the height of decision tree is usually higher than 

that by choosing more dimensions. But the node structure 

size is smaller because choosing multiple dimensions needs 

to keep more information. 

There are two major methods to separate the filters, 

some algorithms use prefixed as the filter separating method 

and thus create equal-sized subspaces for dividing the rule 

table. In other words, they only need to store the “cut bits” 

in decision tree’s internal nodes instead of the keys (or 

cutpoint). The other method is to divide the rule table by 

using cutting endpoints. Each rule in the filters generates a 

range (or interval) between two endpoints. Only endpoints 

of ranges are used as cut-points. Choosing end-points has 

more flexibility than choosing prefix. 

2.1 Hicut, Hypercuts and Hypersplit 

Hicuts and Hypercuts both employ equal-sized 

cuts. They use a heuristic to decide how many cuts should 

be employed. The most important difference between 

Hicuts and Hypercuts is that Hicuts only cuts one dimension 

in an internal node but Hypercuts cuts multiple dimensions. 

Therefore, Hypercuts’ tree depth is shorter than Hicuts.  

Hypersplit only cuts a single dimension in an internal node, 

but it employs end-point to find out the cut-point. First, for 

each interval, Hypersplit calculates the number of rules that 

cover the interval and store it in Sr[j] for1≤j≤M, where M is 

the number of end-points. Then it chooses the smallest 

endpoint m such that [ ] , which is called heuristic weighted 

segment balanced strategy. This strategy tries to make the 

sum of covering rules of all the intervals at the left side and 

right side of the end-point m equal. Hypersplit only 

separates subspaces into two parts. Furthermore, Hypersplit 

only picks up one dimension to cut, so the Hypersplit 

decision tree is a binary tree. 

Table 1 is a 2-D rule table. There are 5 rules and R1’s 

priority is highest. Fig 3 show the decision trees built by 

Hicuts, Hypercuts, Hypersplit.  In Figure 3, Hicuts employs 

the equal-sized subspace partition, and chooses only one 

dimension to cut for every internal node. Because only one 

dimension is selected at a time, the tree height of final 

decision tree is highest among all the schemes. Higher tree 

generates more internal nodes, and the memory storage 

become large. In Figure 3, Hypercuts also employs the 

equal-sized subspace partition, but it chooses multiple 

dimensions at each internal node. So, the height of decision 

tree decreases dramatically. But, there is a critical drawback 

that some rules are duplicated many times. For example, R2 
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exists in 4 leaf nodes. It wastes lots of memory to store 

those duplicated rules. In Figure 3, Hypersplit chooses cut-

points. At the first level, the rules in each of three intervals 

at field-x are 2, 1, and 2. So, value 10 is used as the cut-

point which divides the rule table into two groups, {R1, R2, 

R3} and {R4, R5}. At level 2, left internal node’s rules in 

each of two intervals at field-x are 3 and 1. So, selecting 01 

as cut-point can divide rules into {R1, R2} and {R3}. The 

right internal node’s rules in each of three intervals at field-

y are 1, 1, ad 2. So, choosing 11 as cut-point can divide 

rules into {R4} and {R5}. By this rules it could completes 

the decision tree. This cut-point selection algorithm of 

Hypersplit reduces the rule duplications effectively. 

        

 
 

2.2 Layered Cutting Scheme 

 In a Layered cutting Scheme for a packet 

classification algorithm picks up multiple dimensions and 

cutting with end-point to make the height of decision tree 

much shorter. Then a layered mechanism is proposed to 

reduce the memory consumption dramatically. The 

algorithm focuses on two aspects. The first aspect is to pick 

up the dimensions and the second aspect is to decide the 

cut-point.  

A. Select the cut dimensions: 

The Cut dimensions are chosen based on The set of 

dimensions with Larger Distinct field values, the 

dimensions with value smaller than the average value of all 

dimension and  dimensions whose number of end-points is 

greater than average number of endpoints of all dimensions. 

B. Space decomposition: 

For Space decomposition Weighted Segment balanced 

scheme and ½ end point schemes are choosen.  In ½ end 

point scheme the cut-point m is selected such that the 

number of intervals at m’s leftside is equal to that of m’s 

right side .i.e . 1/2(lowbound endpoint + upbound end-

point) 

In the Layered cutting scheme for selecting the cut 

dimension, distinct field values heuristic, and for select cut-

point weighted segment-balanced heuristic is chosen to 

obtain the best results of memory consumption and number 

of memory accesses. 

Optimization 

Rule duplication is a very serious problem in packet 

classification. It will cause a rule replicated many times and 

use a lot of memory to keep them.  

 

 

 
Figure 5(a) shows rule duplications in a decision tree. R1 

exists in node 6 and node 7 and as a result, both the left 

child of node 6 and node 7 need to store R1. In the same 

way, R4 exists in node 8 and node 9, and both the right 

child of node 8 and left child node of 9 need to store the R4. 

This situation causes a lot of redundant rules. So, we must 

keep cutting the tree until the number of rules in the node is 

less than the bucket size. Rule duplication not only 

increases the memory storage but also increases the tree 

depth. Hypercuts proposes a solution to tackle this problem, 

named “Pushing Common Rule Subsets Upwards”. If all 

children have the same rules, then the parent node will 

create a rule list (i.e., bucket) to store this rules instead of 

duplicating them in its children. Figure 5(b) shows the 

solution by Hypercuts. R1 is stored in the rule list of node 2 

and R4 is stored in the rule list of node 4. When traversing 

to node 2 and node 4, the rules lists belonging the internal 

nodes must also be searched.  Layered cutting scheme 

algorithm tackles those duplicated rules by removing those 

duplicated rules, and uses them to create a duplicated rule 

table. Figure 5(c) shows how we decrease the tree depth and 

the number of node. In our algorithm, during constructing 

our decision tree, if we find a rule could be moved out, then 

when we traverse to another node which has the same rule, 

this rule should be eliminated. That ensures the rule not 

existing in this decision tree and eliminates the replication 

condition effectively. Then, according to heuristic, another 

decision tree is constructed from the duplicated rule table. 

When during search, all the decision trees have to be 

searched. Partial redundancy can’t be pushed up which 

causes the rule still being duplicated many times. In Figure 

5(a), nodes 2, 3, 4 have the same rule R1, but the node 5 

doesn’t have it. So, R1 can not be pushed up to node 1. 

Although R1 can be pulled up to node 2, but node 3 and 

node 4 also need to keep R1 in their child nodes. The 

pushing up heuristic can be regarded as local operation that 

the different sub-trees pushing operation is independent. So 

rule duplication condition still exists.  The data structure 

totally needs 112 bits for each internal node and leaf node. 

For internal node, 1 bit is needed to identify whether the 

node is an internal node or a leaf and 5 bits are needed to 

identify which cut dimensions are selected. The dimensions 

are constrained only up to 3 and so need 80 bits to store the 

three cut-points, e.g., 32 bits, 32 bits, and 16 bits for two IP 

address fields and one port field. Also, need 26 bits to store 

the address of leaf nodes. Because the sibling nodes are 

located in to continuous address, so store only the address 

for first child node and accesses the others by offset. For 

leaf nodes, the largest rule table we test is 10K, so need 14 

bits to discriminate rules, and the bucket size is 8, so  all 

need is 14*8=112 bits for each leaf . 
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2.3 DimCut Algorithm  

DimCut algorithm adds some modifications and 

improvements on the HiCuts algorithm. Consider the 

following definitions: 

Definition: Let wc(H) be the count of wild card entries in 

the column H in the whole of the rule set. 

Definition: Let gd(H) be the geometric distance associated 

with column H in the whole of the rule set. 

Some of the guidelines and principles followed in this 

algorithm are:  i. Dimension Selection: Select the two fields 

Ha, Hb which have the least wc( ) values, as the two 

selected dimensions or alternatively select Ha, Hb which 

have least gd( ) values. ii. Number of cuts and Bucket size: 

Compute the number of cuts as the number of cuts, and the 

bucket size threshold as: NC1 = [20 + (N/1000)] = Number 

of cuts, B = [N/ (20 + (N/1000))] = Bucket size (The 

threshold). Here N = Total Number of rules, in the complete 

rule set, iii. Separate those rules in the same chosen field as 

cut dimension which have wildcard value and shift them to 

the bucket and reject their use for making the decision tree. 

iv. Building index tables to facilitate search within: Build an 

index table for each bucket. v. The number of cuts has to be 

decided at the first time cutting and also the bucket size 

threshold of the algorithm has to be identified, with the 

purpose of trying to avoid splitting of rules while cutting. vi. 

Recursion: The best dimension for next cut level is 

identified after the first cut, again using the same principles. 

vii. New algorithm has two separate levels, preprocessing 

level (tree construction and making index table) and search 

level. viii. Use the Link list data structure at the input stage 

and work on large rule sets.   

Optimize the decision tree:  The decision tree has been 

constructed by DimCut algorithm. Eliminating the empty 

nodes, merging the nodes that are associated with the same 

set of rules, in case the region covered by the rules, is 

smaller than the overall size of the region governing the 

node, one shrinks the region associated with the node to 

minimum cover, and if the same rule repeated in all nodes 

in the same level, then separate that rule and make a bucket 

of that for use at the time of search. Set the default action 

for those entry packets that do not match with any bucket. 

All the rules in all the buckets should be sorted by priority. 

Index table making:  The field that is chosen for cut 

dimension in each bucket will make an index table. The 

framework will contain two stages: an index table and rule 

buckets. Use the same field of the input packet to search in 

the index table. If the specific field matches, the matching 

filter will be selected out of the set in the bucket via linear 

search (using smaller set of rules). All incoming packets 

need to check at the fields selected during preprocessing. 

The decision tree traverses to find the buckets that cover the 

incoming packet. There is priority sorting of all rules. When 

first match index is found a packet will traverse all regions 

of possible belonging. The packet will check the all header 

fields of governing rules linearly. The most prioritized 

packet is picked up via those that match completely. So the 

final action (Accept/Deny) will be taken for that incoming 

packet and the search will end. It supports incremental 

update but in case of significant decreasing performance it 

needs reconstruction. Updating will work in the same 

manner as the search algorithm. For firewalls a very slow 

update rate would suffice and entries can be added manually 

or infrequently.  

The Briefed Preprocessing Algorithm:  

Read rules and create a link list to store them, ii. Find the 

cut dimension by using any of 2 heuristics (any dimension 

that has the smallest geometric length/ any dimension that 

has the smallest number of wildcards), iii. Calculate the 

number of cuts by using of (NC= [20+(Number of 

rules/1000)]) and Calculate the Threshold T= [(Number of 

rules)/NC], iv. Separate those rules that has wildcard value 

in the same chosen field as cut dimension in the bucket, v. 

Construct the tree, For i=1 to NC do, Create buckets 

(nodes), Assign the rules that covered by buckets (nodes) 

region , If the number of rules in bucket > Threshold, Split 

buckets(nodes), Create the index table for rules in buckets, 

Optimize and compress the tree, END. 

The  Briefed  Search  Algorithm:  i. Use Search part: Read 

Packets, For each Packet: Find the buckets that cover the 

packet, Search in the related index table of those buckets, 

Find the specific matched rules, Select the higher priority 

one as a target, Act as its action, iii. End 

        

 
 

2.4 EFFICUTS 
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EffiCuts Algorithm implements the new ideas of 

separable trees combined with selective tree merging to 

tackle the variation in the size of overlapping rules and 

equi-dense cuts to tackle the variation in the rule-space 

density. EffiCuts also leverages equi-dense cuts to achieve 

fewer accesses per node than HiCuts and HyperCuts by co-

locating parts of information in a node and its children.  

Separable Trees 

Placing small and large rules in different trees would reduce 

the replication. Large rules are identified easily as those that 

have wildcards in many fields. There is a possibility of two 

trees — one for rules with many wildcard fields and the 

other for the rest. Another factor called separability, is more 

fundamental than rule size, which determines the extent of 

replication. While the above scheme ignores the rule space’s 

dimensions, separability considers variability of rule size in 

each dimension. Separability enables the solution to avoid 

assigning and optimizing arbitrary percentages of the rules 

to distinct trees.  To eliminate overlap among small and 

large rules, all small and large rules are separated by 

defining a subset of rules as separable if all the rules in the 

subset are either small or large in each dimension. A distinct 

tree is built for each such subset where each dimension can 

be cut coarsely to separate the large rules, or finely to 

separate the small rules without incurring replication. 

 

 Identifying Separable Rules 

Separability implies that all the rules in a tree are either 

wildcard or non-wildcard in each field; otherwise, cuts 

separating the non-wildcard rules would replicate the 

wildcard rules. The categories assuming the standard, five-

dimensional IPv4 classifier are: 

• Category 1: rules with four wildcards 

• Category 2: rules with three wildcards 

• Category 3: rules with two wildcards 

• Category 4: rules with one or no wildcards 

To capture separability, each category is broken into sub-

categories where the wildcard rules and non-wildcard rules 

are put in different sub-categories on a per-field basis. 

Accordingly, Category 1 has a sub-category for each non-

wildcard field, for a total of C1 = 5 sub-categories. 

Category 2 has a sub-category for each pair of non-wildcard 

fields for a total of C2 = 10 sub-categories. Category 3 has a 

sub-category for each triplet of non-wildcard fields for a 

total of C3 = 10 sub-categories. Because Category 4 

contains mostly small rules, the further sub-categories are 

unnecessary.  

Selective Tree Merging 

Selective tree merging, which merges two separable trees 

mixing rules that may be small or large in at most one 

dimension. For instance, a Category 1 tree that contains 

rules with non-wildcards in field A (and wildcards in the 

other fields) is merged with Category 2 tree that contains 

rules with non-wildcards in fields A and B, and wildcards in 

the rest of the fields. This choice ensures that wildcards (of 

Category 1) are merged with non-wildcards (of Category 2) 

in only field B; in each of the rest of the fields, either non-

wildcards are merged with non-wildcards (field A) or 

wildcards with wildcards (the rest). This significantly 

reduces the number of lookups while incurring only modest 

rule replication. One exception is the single Category 4 tree 

which is not broken into sub-categories, and hence, already 

mixes wildcard and non-wildcards in multiple fields. As 

such, merging this tree with other Category 3 trees would 

cause such mixing in additional fields and would lead to 

significant rule replication. Therefore, do not merge the 

Category 4 tree with any other tree. 

In EffiCuts, copy of rules, instead of a pointer to, each rule 

at the leaf, forcing the rules to be in contiguous  memory 

locations.  However, if a rule is not replicated then this 

strategy requires less memory as it stores only the rule, and 

not a pointer and the rule. Because EffiCuts’ rule replication 

is minimal, these two effects nearly cancel each other 

resulting in little extra memory. 

 

Equi-dense Cuts 

Recall that HyperCuts’ equi-sized cuts, which are powers of 

two in number, simplify identification of the matching child 

but result in redundancy due to rule-space density variation. 

Fine cuts to separate densely-clustered rules needlessly 

partition the sparse parts of the rule space resulting in many 

ineffectual tree nodes that separate only a few rules but 

incur considerable memory overhead. This redundancy 

primarily adds ineffectual nodes and also causes some rule 

replication among the ineffectual nodes.  The child-pointer 

redundancy enlarges the node’s child-pointer array which 

contributes about 30-50% of the total memory for the tree. 

Consequently, reducing this redundancy significantly 

reduces the total memory. Similarly, the partial redundancy 

in siblings’ rules manifests as rule replication which is 

rampant in HyperCuts even after employing node merging 

and moving up. To tackle both the child-pointer redundancy 

and partial redundancy in siblings’ rules, we propose equi-

dense cuts which are unequal cuts that distribute a node’s 

rules as evenly among the children as possible. Equi-dense 

cuts achieve fine cuts in the dense parts of the rule space 

and coarse cuts in the sparse parts. Unequal cuts are 

constructed by fusing unequal numbers of HyperCuts’ 

equi-sized cuts. By fusing redundant equi-sized cuts, our 

unequal cuts (1) merge redundant child pointers at the 

parent node into one pointer and (2) remove replicas of 

rules in the fused siblings. 

Fusion Heuristics 

For the fusion of equi-sized cuts to produce unequal cuts, 

the simple and conservative heuristic is to fuse contiguous 

sibling leaves (i.e., corresponding to contiguous values of 

the bits used in the cut) if the resulting node remains a leaf 

(i.e., has fewer than binth rules). This fusion does not affect 

the tree depth but reduces the number of nodes in the tree 

and reduces rule replication among siblings. This heuristic 

serves to remove fine cuts in sparse regions along with the 

accompanying rule replication. To capture rule replication 

in denser regions, the moderate heuristic fuses contiguous, 

non-leaf siblings if the resulting node has fewer rules than 

(1) the sum of the rules in the original nodes, and (2) the 

maximum number of rules among all the siblings of the 

original nodes (i.e., including those siblings that are not 

being fused). The first constraint ensures that the original 

nodes share some rules so that the heuristic reduces this 

redundancy. The second constraint decreases the chance of 

the tree becoming deeper due to the fusion. However, there 

is no guarantee on the tree depth because the resultant node 

could have a different set of rules than the original nodes 

which may lead to a deeper tree. The aggressive heuristic is 
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to fuse non-leaf nodes as long as the resulting node does not 

exceed some percentage (e.g., 40%) of the number of rules 

in the sibling with the maximum number of rules. This 

heuristic always reduces the number of children and thereby 

shrinks the child-pointer array.  

 

 Lookup by Packets 

Because equi-dense cuts are unequal, identifying the 

matching child at a tree node is more involved than simple 

indexing into an array. Equi-sized cuts, which are powers of 

two in number, result in a one-to-one, ordered 

correspondence between the index values generated from 

the bits of the appropriate field(s) of the packet and the 

entries in the child-pointer array at each node. This 

correspondence enables simple indexing into the array. In 

contrast, unequal cuts destroy this correspondence by fusing 

multiple equi-sized cuts into one equi-dense cut, causing 

multiple indices to map to the same array entry. 

Consequently, simple indexing would not work and an 

incoming packet needs to compare against all the array 

entries to find the matching child. To control the complexity 

of the comparison hardware, that the number of unequal 

cuts per node is constrained, and hence the number of 

comparators needed, not to exceed a threshold, called 

max_cuts. For nodes that need more cuts, the algorithm fall 

back on equi-sized cuts, as in HiCuts and HyperCuts, with 

the accompanying redundancy. One bit per node is used to 

indicate whether the node uses equi-sized or equi-dense 

cuts. Each node using equi-dense cuts stores the number of 

unequal cuts and an array of the starting indices of the cuts.  

Node Co-location 

In EffiCuts’ nodes using equidense cuts, the first part 

additionally holds the table of starting indices of each cut . 

A packet has to look up the cut dimension and the number 

of cuts in each node’s first part to determine its index nto 

the array in the second part, and then retrieve the child node 

pointer at the index. Consequently, each node requires  at 

least two memory accesses. To enable each node to require 

only one access and thereby achieve better memory 

bandwidth, a node’s child-pointer array is co-located in 

contiguous memory locations (the second part) with all the 

children’s headers (their first parts). This co-location 

converts the array of pointers into an array of headers and 

pointers to the children’s arrays (rather than pointers to the 

child nodes themselves). Accessing each such collocated 

node retrieves the header of the indexed child node in 

addition to a pointer to the child node’s array (assuming the 

memory is wide enough), thereby combining the node’s 

second access with the child node’s first access. Thus, each 

node requires only one reasonably-wide access. (While 

narrower memories would require more than one access, the 

co-location would still reduce the number of accesses by 

one.) 

With the co-location, the array now holds the children’s 

headers (and the pointers to the children’s arrays). The 

headers must be unique for each child node in order for the 

index calculated from the parent node’s header to work 

correctly. Consequently, the headers for identical children 

have to be replicated in the array, incurring some extra 

memory (though identical children may still share a single 

child node’s array). Fortunately, the redundancy is minimal 

for EffiCuts’ equi-dense cuts where the nodes are forced to 

have only a few children which are usually distinct 

(max_cuts is 8), making it worthwhile to trade-off small 

amounts of memory for significant bandwidth demand 

reduction. To reduce further the number of memory 

accesses per node, HyperCuts’ rule moving-up optimization 

in EffiCuts is eliminated because each moved-up rule 

requires two accesses: one for the pointer to the rule and the 

other for the rule itself whereas a rule that is not moved-up 

in EffiCuts would fall in a leaf where the rule may 

contribute only a part of a wide access. Rule moving-up 

reduces HyperCuts’ rule replication, which is minimal for 

EffiCuts, and therefore, the elimination makes sense. 

EffiCuts facilitates incremental updates in at least two ways. 

First, because separable trees drastically reduce replication, 

updates are unlikely to involve replication, and hence do not 

require many changes to the tree. Second, equi-dense cuts 

afford new flexibility that does not exist in HyperCuts. If a 

new rule falls in an already-full leaf (i.e., a leaf with binth 

rules) then equi-dense cuts provide two options: (1) the 

existing cuts can be nudged to create room for the new rule 

by moving some of the rules from the already-full leaf to a 

not-full sibling; or (2) if the leaf’s parent has fewer cuts than 

max_cuts, then a cut can be added to accommodate the new 

rule. 

 
CONCLUSIONS 

 The Hicut, Hypercut, Hypersplit algorithms are the 

early developed algorithms among the Decision tree based 

packet classification algorithms.  They have their own 

advantages and disadvantages. The DImcut, Layered 

Cutting scheme and Efficut algorithms are improved from 

the Hicut and Hypercut algorithms by minizing the memory 

requirements and access time for the Firewall databases and 

access control lists.  
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