
Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 28

Decision Tree based Network Packet

Classification Algorithms
T S URMILA

Department of Computer Science, Sourashtra College, Madurai-4 Email: urmi_ts@yahoo.co.in

 Dr R BALASUBRAMANIAN

Dean - MCA, KVCET, Mathuranthagam. Email: drrb_1951@gmail.com

---ABSTRACT--

The Internet is comprised of a mesh of routers interconnected by links. Communication among nodes on the

Internet (routers and end-hosts) takes place using the Internet Protocol, commonly known as IP. IP datagrams

(packets) travel over links from one router to the next on their way towards their final destination. Each router

performs a forwarding decision on incoming packets to determine the packet’s next-hop router. IP router forwards

the packets and also chooses to perform special processing on incoming packets. Such special processing requires

that the router classify incoming packets into one of several flows which is called Packet Classification. Packet

Classification may be based on single Dimension or Multidimensional. The Packet classification is based on set of

rules among which one of them is matched by the incoming packet and the corresponding action is taken. Decision

Tree is one of the best datastrcture available to store and find the best matching rules. HiCut, HyperCut, Hypersplit,

Layered cutting, DimCut, Efficut are some of the packet classification algorithms based on Decision tree Data

structure.

Keywords – Packet Classification, HiCut, HyperCut, Hypersplit, Dimcut, Efficut.

-- -

1. INTRODUCTION
 A packet-switch in a router must perform

a forwarding decision on each arriving packet for deciding

where to send it next. An IP router does this by looking up

the packet’s destination address in a forwarding table. This

yields the address of the next-hop router and determines the

outlet port through which the packet should be sent. This

lookup operation is called a route lookup or an address

lookup operation. Second, the packet-switch must transfer

the packet from the way in to the way out port identified by

the address lookup operation. This is called switching, and

also involves physical movement of the bits carried by the

packet.

1.1 Architecture of a packet-by-packet router

 The Packet by packet router consists of one line

card for each port and a switching fabric (such as a

crossbar) that interconnects all the line cards. Typically, one

of the line cards houses a processor functioning as the

central controller for the router. The path taken by a packet

through a packet-by-packet router consists of two main

functions on the packet: (1) performing route lookup based

on the packet’s destination address to identify the outgoing

port, and (2) switching the packet to the output port.

The routing processor in a router performs one or

more routing protocols such as RIP by exchanging protocol

messages with neighboring routers. This enables it to

maintain a routing table that contains a representation of the

network topology state information and stores the current

information about the best known paths to destination

networks. The router typically maintains a version of this

routing table in all line cards so that lookups on incoming

packets can be performed locally on each line card, without

loading the central processor. This version of the central

processor’s routing table is referred o as the line card’s

forwarding table because it is directly used for packet

forwarding.

1.2 Flow-aware IP router and Packet Classification

One main reason for the existence of flow-aware

routers stems from an ISP’s desire to have the capability of

providing differentiated services to its users. Traditionally,

the Internet provides only a “best-effort” service, treating all

packets going to the same destination identically, and

servicing them in a first-come-first-served manner. In order

to provide differentiated services, routers require additional

mechanisms. These mechanisms — admission control,

conditioning (metering, marking, shaping, and policing),

resource reservation (optional), queue management and fair

scheduling require, first of all, the capability to distinguish

and isolate traffic belonging to different users based on

service agreements negotiated between the ISP and its

customer. This has led to service agreements, express them

in terms of rules or policies configured on incoming

packets, and isolate incoming traffic according to these

rules. The collection of rules or policies is called a policy

database, flow classifier, or simply a classifier. Each rule

specifies a flow that a packet may belong to based on some

criteria on the contents of the packet header. All packets

belonging to the same flow are treated in a similar manner.

The identified flow of an incoming packet specifies an

action to be applied to the packet. For example, a firewall

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 29

router may carry out the action of either denying or allowing

access to a protected network. The determination of this

action is called packet classification — the capability of

routers to identify the action associated with the “best” rule

an incoming packet matches. Packet classification allows

ISPs to differentiate from their competition and gain

additional revenue by providing different value-added

services to different customers.

Flow-aware routers perform a superset of the functions of a

packet-by-packet router. It consists of four main functions

on the packet: (1) performing route lookup to identify the

outgoing port, (2) performing classification to identify the

flow to which an incoming packet belongs, (3) applying

theaction (as part of the provisioning of differentiated

services or some other form of special processing) based on

the result of classification, and (4) switching to the output

port.

1.3 Packet Classification

A packet classifier must compare header fields of

every incoming packet against a set of rules in order to

assign a flow identifier. A rule must specify a set of headers

and the policy to be in use. A Rule Space is a collection of

rules, specified as a table (flat data base) with, Columns as

RuleID, ‘D’ header field specification as f1, f2… fd, and an

Action column. Each record (Row) specifies a rule. Number

D would be the Dimension of the rule space. Process of

classification requires, applying the rules from the top.

Attributes of the packet to be classified are matched with

values in the Header columns, and if successful the Action

becomes applicable. For example, a typical IP tables rule

may specify: A INPUT –p tcp --dport 22 -j ACCEPT. This

rule is to be interpreted as “a TCP packet is to be accepted if

the destination port is equal to 22 “. If no match is found the

next rule in the table is to be tested. In general the process

continues sequentially till a match is found.

 Mathematically, a packet P is said to match a

particular rule R, if the ith field of the header of P satisfies

the regular expression R[i], for all 0 ≤ i < F . If a packet P

matches multiple rules, the matching rule with the highest

priority is returned. The ith component of rule R referred to

as R[i], is a regular expression on the ith field of the packet

header. When viewed in this way two distinct rules are said

to either practically overlapping or non-overlapping or that

one is a subset of the other with corresponding set related

definition. Given a classifier C with N rules, Rj, 1 ≤j≤N,

where Rj consists of three entities:

i)Range expressions: Rj[i], 1 ≤i≤d, on each of the d header

fields.

ii)Priority: pri(Rj), indicating the priority of the rule in the

classifier. Commonly, 1st policy has the highest priority, Nth

policy (normally deny all) has the lowest.

iii)An action: referred to as action(Rj). In firewall, usually

there is a default policy as the last policy that matches and

denies all.

2. Decision Tree based Algorithms

Decision tree based packet classification

algorithms focus on two aspects. The first one is how to

select the cut dimension and the second is how to decide the

cut-point for dividing address space into subspaces. There

are two major methods to pick up the cut dimension: select

a single cut dimension one at a time or select multiple cut

dimensions at a time. When choosing a single cut

dimension, the height of decision tree is usually higher than

that by choosing more dimensions. But the node structure

size is smaller because choosing multiple dimensions needs

to keep more information.

There are two major methods to separate the filters,

some algorithms use prefixed as the filter separating method

and thus create equal-sized subspaces for dividing the rule

table. In other words, they only need to store the “cut bits”

in decision tree’s internal nodes instead of the keys (or

cutpoint). The other method is to divide the rule table by

using cutting endpoints. Each rule in the filters generates a

range (or interval) between two endpoints. Only endpoints

of ranges are used as cut-points. Choosing end-points has

more flexibility than choosing prefix.

2.1 Hicut, Hypercuts and Hypersplit

Hicuts and Hypercuts both employ equal-sized

cuts. They use a heuristic to decide how many cuts should

be employed. The most important difference between

Hicuts and Hypercuts is that Hicuts only cuts one dimension

in an internal node but Hypercuts cuts multiple dimensions.

Therefore, Hypercuts’ tree depth is shorter than Hicuts.

Hypersplit only cuts a single dimension in an internal node,

but it employs end-point to find out the cut-point. First, for

each interval, Hypersplit calculates the number of rules that

cover the interval and store it in Sr[j] for1≤j≤M, where M is

the number of end-points. Then it chooses the smallest

endpoint m such that [] , which is called heuristic weighted

segment balanced strategy. This strategy tries to make the

sum of covering rules of all the intervals at the left side and

right side of the end-point m equal. Hypersplit only

separates subspaces into two parts. Furthermore, Hypersplit

only picks up one dimension to cut, so the Hypersplit

decision tree is a binary tree.

Table 1 is a 2-D rule table. There are 5 rules and R1’s

priority is highest. Fig 3 show the decision trees built by

Hicuts, Hypercuts, Hypersplit. In Figure 3, Hicuts employs

the equal-sized subspace partition, and chooses only one

dimension to cut for every internal node. Because only one

dimension is selected at a time, the tree height of final

decision tree is highest among all the schemes. Higher tree

generates more internal nodes, and the memory storage

become large. In Figure 3, Hypercuts also employs the

equal-sized subspace partition, but it chooses multiple

dimensions at each internal node. So, the height of decision

tree decreases dramatically. But, there is a critical drawback

that some rules are duplicated many times. For example, R2

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 30

exists in 4 leaf nodes. It wastes lots of memory to store

those duplicated rules. In Figure 3, Hypersplit chooses cut-

points. At the first level, the rules in each of three intervals

at field-x are 2, 1, and 2. So, value 10 is used as the cut-

point which divides the rule table into two groups, {R1, R2,

R3} and {R4, R5}. At level 2, left internal node’s rules in

each of two intervals at field-x are 3 and 1. So, selecting 01

as cut-point can divide rules into {R1, R2} and {R3}. The

right internal node’s rules in each of three intervals at field-

y are 1, 1, ad 2. So, choosing 11 as cut-point can divide

rules into {R4} and {R5}. By this rules it could completes

the decision tree. This cut-point selection algorithm of

Hypersplit reduces the rule duplications effectively.

2.2 Layered Cutting Scheme

 In a Layered cutting Scheme for a packet

classification algorithm picks up multiple dimensions and

cutting with end-point to make the height of decision tree

much shorter. Then a layered mechanism is proposed to

reduce the memory consumption dramatically. The

algorithm focuses on two aspects. The first aspect is to pick

up the dimensions and the second aspect is to decide the

cut-point.

A. Select the cut dimensions:

The Cut dimensions are chosen based on The set of

dimensions with Larger Distinct field values, the

dimensions with value smaller than the average value of all

dimension and dimensions whose number of end-points is

greater than average number of endpoints of all dimensions.

B. Space decomposition:

For Space decomposition Weighted Segment balanced

scheme and ½ end point schemes are choosen. In ½ end

point scheme the cut-point m is selected such that the

number of intervals at m’s leftside is equal to that of m’s

right side .i.e . 1/2(lowbound endpoint + upbound end-

point)

In the Layered cutting scheme for selecting the cut

dimension, distinct field values heuristic, and for select cut-

point weighted segment-balanced heuristic is chosen to

obtain the best results of memory consumption and number

of memory accesses.

Optimization

Rule duplication is a very serious problem in packet

classification. It will cause a rule replicated many times and

use a lot of memory to keep them.

Figure 5(a) shows rule duplications in a decision tree. R1

exists in node 6 and node 7 and as a result, both the left

child of node 6 and node 7 need to store R1. In the same

way, R4 exists in node 8 and node 9, and both the right

child of node 8 and left child node of 9 need to store the R4.

This situation causes a lot of redundant rules. So, we must

keep cutting the tree until the number of rules in the node is

less than the bucket size. Rule duplication not only

increases the memory storage but also increases the tree

depth. Hypercuts proposes a solution to tackle this problem,

named “Pushing Common Rule Subsets Upwards”. If all

children have the same rules, then the parent node will

create a rule list (i.e., bucket) to store this rules instead of

duplicating them in its children. Figure 5(b) shows the

solution by Hypercuts. R1 is stored in the rule list of node 2

and R4 is stored in the rule list of node 4. When traversing

to node 2 and node 4, the rules lists belonging the internal

nodes must also be searched. Layered cutting scheme

algorithm tackles those duplicated rules by removing those

duplicated rules, and uses them to create a duplicated rule

table. Figure 5(c) shows how we decrease the tree depth and

the number of node. In our algorithm, during constructing

our decision tree, if we find a rule could be moved out, then

when we traverse to another node which has the same rule,

this rule should be eliminated. That ensures the rule not

existing in this decision tree and eliminates the replication

condition effectively. Then, according to heuristic, another

decision tree is constructed from the duplicated rule table.

When during search, all the decision trees have to be

searched. Partial redundancy can’t be pushed up which

causes the rule still being duplicated many times. In Figure

5(a), nodes 2, 3, 4 have the same rule R1, but the node 5

doesn’t have it. So, R1 can not be pushed up to node 1.

Although R1 can be pulled up to node 2, but node 3 and

node 4 also need to keep R1 in their child nodes. The

pushing up heuristic can be regarded as local operation that

the different sub-trees pushing operation is independent. So

rule duplication condition still exists. The data structure

totally needs 112 bits for each internal node and leaf node.

For internal node, 1 bit is needed to identify whether the

node is an internal node or a leaf and 5 bits are needed to

identify which cut dimensions are selected. The dimensions

are constrained only up to 3 and so need 80 bits to store the

three cut-points, e.g., 32 bits, 32 bits, and 16 bits for two IP

address fields and one port field. Also, need 26 bits to store

the address of leaf nodes. Because the sibling nodes are

located in to continuous address, so store only the address

for first child node and accesses the others by offset. For

leaf nodes, the largest rule table we test is 10K, so need 14

bits to discriminate rules, and the bucket size is 8, so all

need is 14*8=112 bits for each leaf .

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 31

2.3 DimCut Algorithm

DimCut algorithm adds some modifications and

improvements on the HiCuts algorithm. Consider the

following definitions:

Definition: Let wc(H) be the count of wild card entries in

the column H in the whole of the rule set.

Definition: Let gd(H) be the geometric distance associated

with column H in the whole of the rule set.

Some of the guidelines and principles followed in this

algorithm are: i. Dimension Selection: Select the two fields

Ha, Hb which have the least wc() values, as the two

selected dimensions or alternatively select Ha, Hb which

have least gd() values. ii. Number of cuts and Bucket size:

Compute the number of cuts as the number of cuts, and the

bucket size threshold as: NC1 = [20 + (N/1000)] = Number

of cuts, B = [N/ (20 + (N/1000))] = Bucket size (The

threshold). Here N = Total Number of rules, in the complete

rule set, iii. Separate those rules in the same chosen field as

cut dimension which have wildcard value and shift them to

the bucket and reject their use for making the decision tree.

iv. Building index tables to facilitate search within: Build an

index table for each bucket. v. The number of cuts has to be

decided at the first time cutting and also the bucket size

threshold of the algorithm has to be identified, with the

purpose of trying to avoid splitting of rules while cutting. vi.

Recursion: The best dimension for next cut level is

identified after the first cut, again using the same principles.

vii. New algorithm has two separate levels, preprocessing

level (tree construction and making index table) and search

level. viii. Use the Link list data structure at the input stage

and work on large rule sets.

Optimize the decision tree: The decision tree has been

constructed by DimCut algorithm. Eliminating the empty

nodes, merging the nodes that are associated with the same

set of rules, in case the region covered by the rules, is

smaller than the overall size of the region governing the

node, one shrinks the region associated with the node to

minimum cover, and if the same rule repeated in all nodes

in the same level, then separate that rule and make a bucket

of that for use at the time of search. Set the default action

for those entry packets that do not match with any bucket.

All the rules in all the buckets should be sorted by priority.

Index table making: The field that is chosen for cut

dimension in each bucket will make an index table. The

framework will contain two stages: an index table and rule

buckets. Use the same field of the input packet to search in

the index table. If the specific field matches, the matching

filter will be selected out of the set in the bucket via linear

search (using smaller set of rules). All incoming packets

need to check at the fields selected during preprocessing.

The decision tree traverses to find the buckets that cover the

incoming packet. There is priority sorting of all rules. When

first match index is found a packet will traverse all regions

of possible belonging. The packet will check the all header

fields of governing rules linearly. The most prioritized

packet is picked up via those that match completely. So the

final action (Accept/Deny) will be taken for that incoming

packet and the search will end. It supports incremental

update but in case of significant decreasing performance it

needs reconstruction. Updating will work in the same

manner as the search algorithm. For firewalls a very slow

update rate would suffice and entries can be added manually

or infrequently.

The Briefed Preprocessing Algorithm:

Read rules and create a link list to store them, ii. Find the

cut dimension by using any of 2 heuristics (any dimension

that has the smallest geometric length/ any dimension that

has the smallest number of wildcards), iii. Calculate the

number of cuts by using of (NC= [20+(Number of

rules/1000)]) and Calculate the Threshold T= [(Number of

rules)/NC], iv. Separate those rules that has wildcard value

in the same chosen field as cut dimension in the bucket, v.

Construct the tree, For i=1 to NC do, Create buckets

(nodes), Assign the rules that covered by buckets (nodes)

region , If the number of rules in bucket > Threshold, Split

buckets(nodes), Create the index table for rules in buckets,

Optimize and compress the tree, END.

The Briefed Search Algorithm: i. Use Search part: Read

Packets, For each Packet: Find the buckets that cover the

packet, Search in the related index table of those buckets,

Find the specific matched rules, Select the higher priority

one as a target, Act as its action, iii. End

2.4 EFFICUTS

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 32

EffiCuts Algorithm implements the new ideas of

separable trees combined with selective tree merging to

tackle the variation in the size of overlapping rules and

equi-dense cuts to tackle the variation in the rule-space

density. EffiCuts also leverages equi-dense cuts to achieve

fewer accesses per node than HiCuts and HyperCuts by co-

locating parts of information in a node and its children.

Separable Trees

Placing small and large rules in different trees would reduce

the replication. Large rules are identified easily as those that

have wildcards in many fields. There is a possibility of two

trees — one for rules with many wildcard fields and the

other for the rest. Another factor called separability, is more

fundamental than rule size, which determines the extent of

replication. While the above scheme ignores the rule space’s

dimensions, separability considers variability of rule size in

each dimension. Separability enables the solution to avoid

assigning and optimizing arbitrary percentages of the rules

to distinct trees. To eliminate overlap among small and

large rules, all small and large rules are separated by

defining a subset of rules as separable if all the rules in the

subset are either small or large in each dimension. A distinct

tree is built for each such subset where each dimension can

be cut coarsely to separate the large rules, or finely to

separate the small rules without incurring replication.

 Identifying Separable Rules

Separability implies that all the rules in a tree are either

wildcard or non-wildcard in each field; otherwise, cuts

separating the non-wildcard rules would replicate the

wildcard rules. The categories assuming the standard, five-

dimensional IPv4 classifier are:

• Category 1: rules with four wildcards

• Category 2: rules with three wildcards

• Category 3: rules with two wildcards

• Category 4: rules with one or no wildcards

To capture separability, each category is broken into sub-

categories where the wildcard rules and non-wildcard rules

are put in different sub-categories on a per-field basis.

Accordingly, Category 1 has a sub-category for each non-

wildcard field, for a total of C1 = 5 sub-categories.

Category 2 has a sub-category for each pair of non-wildcard

fields for a total of C2 = 10 sub-categories. Category 3 has a

sub-category for each triplet of non-wildcard fields for a

total of C3 = 10 sub-categories. Because Category 4

contains mostly small rules, the further sub-categories are

unnecessary.

Selective Tree Merging

Selective tree merging, which merges two separable trees

mixing rules that may be small or large in at most one

dimension. For instance, a Category 1 tree that contains

rules with non-wildcards in field A (and wildcards in the

other fields) is merged with Category 2 tree that contains

rules with non-wildcards in fields A and B, and wildcards in

the rest of the fields. This choice ensures that wildcards (of

Category 1) are merged with non-wildcards (of Category 2)

in only field B; in each of the rest of the fields, either non-

wildcards are merged with non-wildcards (field A) or

wildcards with wildcards (the rest). This significantly

reduces the number of lookups while incurring only modest

rule replication. One exception is the single Category 4 tree

which is not broken into sub-categories, and hence, already

mixes wildcard and non-wildcards in multiple fields. As

such, merging this tree with other Category 3 trees would

cause such mixing in additional fields and would lead to

significant rule replication. Therefore, do not merge the

Category 4 tree with any other tree.

In EffiCuts, copy of rules, instead of a pointer to, each rule

at the leaf, forcing the rules to be in contiguous memory

locations. However, if a rule is not replicated then this

strategy requires less memory as it stores only the rule, and

not a pointer and the rule. Because EffiCuts’ rule replication

is minimal, these two effects nearly cancel each other

resulting in little extra memory.

Equi-dense Cuts

Recall that HyperCuts’ equi-sized cuts, which are powers of

two in number, simplify identification of the matching child

but result in redundancy due to rule-space density variation.

Fine cuts to separate densely-clustered rules needlessly

partition the sparse parts of the rule space resulting in many

ineffectual tree nodes that separate only a few rules but

incur considerable memory overhead. This redundancy

primarily adds ineffectual nodes and also causes some rule

replication among the ineffectual nodes. The child-pointer

redundancy enlarges the node’s child-pointer array which

contributes about 30-50% of the total memory for the tree.

Consequently, reducing this redundancy significantly

reduces the total memory. Similarly, the partial redundancy

in siblings’ rules manifests as rule replication which is

rampant in HyperCuts even after employing node merging

and moving up. To tackle both the child-pointer redundancy

and partial redundancy in siblings’ rules, we propose equi-

dense cuts which are unequal cuts that distribute a node’s

rules as evenly among the children as possible. Equi-dense

cuts achieve fine cuts in the dense parts of the rule space

and coarse cuts in the sparse parts. Unequal cuts are

constructed by fusing unequal numbers of HyperCuts’

equi-sized cuts. By fusing redundant equi-sized cuts, our

unequal cuts (1) merge redundant child pointers at the

parent node into one pointer and (2) remove replicas of

rules in the fused siblings.

Fusion Heuristics

For the fusion of equi-sized cuts to produce unequal cuts,

the simple and conservative heuristic is to fuse contiguous

sibling leaves (i.e., corresponding to contiguous values of

the bits used in the cut) if the resulting node remains a leaf

(i.e., has fewer than binth rules). This fusion does not affect

the tree depth but reduces the number of nodes in the tree

and reduces rule replication among siblings. This heuristic

serves to remove fine cuts in sparse regions along with the

accompanying rule replication. To capture rule replication

in denser regions, the moderate heuristic fuses contiguous,

non-leaf siblings if the resulting node has fewer rules than

(1) the sum of the rules in the original nodes, and (2) the

maximum number of rules among all the siblings of the

original nodes (i.e., including those siblings that are not

being fused). The first constraint ensures that the original

nodes share some rules so that the heuristic reduces this

redundancy. The second constraint decreases the chance of

the tree becoming deeper due to the fusion. However, there

is no guarantee on the tree depth because the resultant node

could have a different set of rules than the original nodes

which may lead to a deeper tree. The aggressive heuristic is

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 33

to fuse non-leaf nodes as long as the resulting node does not

exceed some percentage (e.g., 40%) of the number of rules

in the sibling with the maximum number of rules. This

heuristic always reduces the number of children and thereby

shrinks the child-pointer array.

 Lookup by Packets

Because equi-dense cuts are unequal, identifying the

matching child at a tree node is more involved than simple

indexing into an array. Equi-sized cuts, which are powers of

two in number, result in a one-to-one, ordered

correspondence between the index values generated from

the bits of the appropriate field(s) of the packet and the

entries in the child-pointer array at each node. This

correspondence enables simple indexing into the array. In

contrast, unequal cuts destroy this correspondence by fusing

multiple equi-sized cuts into one equi-dense cut, causing

multiple indices to map to the same array entry.

Consequently, simple indexing would not work and an

incoming packet needs to compare against all the array

entries to find the matching child. To control the complexity

of the comparison hardware, that the number of unequal

cuts per node is constrained, and hence the number of

comparators needed, not to exceed a threshold, called

max_cuts. For nodes that need more cuts, the algorithm fall

back on equi-sized cuts, as in HiCuts and HyperCuts, with

the accompanying redundancy. One bit per node is used to

indicate whether the node uses equi-sized or equi-dense

cuts. Each node using equi-dense cuts stores the number of

unequal cuts and an array of the starting indices of the cuts.

Node Co-location

In EffiCuts’ nodes using equidense cuts, the first part

additionally holds the table of starting indices of each cut .

A packet has to look up the cut dimension and the number

of cuts in each node’s first part to determine its index nto

the array in the second part, and then retrieve the child node

pointer at the index. Consequently, each node requires at

least two memory accesses. To enable each node to require

only one access and thereby achieve better memory

bandwidth, a node’s child-pointer array is co-located in

contiguous memory locations (the second part) with all the

children’s headers (their first parts). This co-location

converts the array of pointers into an array of headers and

pointers to the children’s arrays (rather than pointers to the

child nodes themselves). Accessing each such collocated

node retrieves the header of the indexed child node in

addition to a pointer to the child node’s array (assuming the

memory is wide enough), thereby combining the node’s

second access with the child node’s first access. Thus, each

node requires only one reasonably-wide access. (While

narrower memories would require more than one access, the

co-location would still reduce the number of accesses by

one.)

With the co-location, the array now holds the children’s

headers (and the pointers to the children’s arrays). The

headers must be unique for each child node in order for the

index calculated from the parent node’s header to work

correctly. Consequently, the headers for identical children

have to be replicated in the array, incurring some extra

memory (though identical children may still share a single

child node’s array). Fortunately, the redundancy is minimal

for EffiCuts’ equi-dense cuts where the nodes are forced to

have only a few children which are usually distinct

(max_cuts is 8), making it worthwhile to trade-off small

amounts of memory for significant bandwidth demand

reduction. To reduce further the number of memory

accesses per node, HyperCuts’ rule moving-up optimization

in EffiCuts is eliminated because each moved-up rule

requires two accesses: one for the pointer to the rule and the

other for the rule itself whereas a rule that is not moved-up

in EffiCuts would fall in a leaf where the rule may

contribute only a part of a wide access. Rule moving-up

reduces HyperCuts’ rule replication, which is minimal for

EffiCuts, and therefore, the elimination makes sense.

EffiCuts facilitates incremental updates in at least two ways.

First, because separable trees drastically reduce replication,

updates are unlikely to involve replication, and hence do not

require many changes to the tree. Second, equi-dense cuts

afford new flexibility that does not exist in HyperCuts. If a

new rule falls in an already-full leaf (i.e., a leaf with binth

rules) then equi-dense cuts provide two options: (1) the

existing cuts can be nudged to create room for the new rule

by moving some of the rules from the already-full leaf to a

not-full sibling; or (2) if the leaf’s parent has fewer cuts than

max_cuts, then a cut can be added to accommodate the new

rule.

CONCLUSIONS

 The Hicut, Hypercut, Hypersplit algorithms are the

early developed algorithms among the Decision tree based

packet classification algorithms. They have their own

advantages and disadvantages. The DImcut, Layered

Cutting scheme and Efficut algorithms are improved from

the Hicut and Hypercut algorithms by minizing the memory

requirements and access time for the Firewall databases and

access control lists.

REFERENCES

1. Algorithms for routing lookups and Packet classification

Pankaj Gupta December 2000

2. Brodnik, S. Carlsson, M. Degermark and S. Pink,

―Small Forwarding Tables for Fast Routing Lookups.‖

Proc. ACM SIGCOMM 1997, pp. 3-14, Cannes, France

3. Yaxuan Qi and Jun Li “Packet Classification with

Network Traffic Statistics”

4. Pankaj Gupta and Nick McKeown, ― Packet

Classification using Hierarchical Intelligent Cuttings‖

5. Hediyeh AmirJahanshahi Sistani, Haridas Acharya

―Comparative evaluation of Recursive Dimensional

Cutting Packet Classification, DimCut, with Analysis‖

International Journal of Computer Science & Engineering

Technology (IJCSET)

Proceedings of the UGC Sponsored National Conference on Advanced Networking and Applications,
27th March 2015

 Special Issue Published in Int. Jnl. Of Advanced Networking and Applications (IJANA) Page 34

6. Sumeet Singh, Florin Baboescu, George Varghese, Jia

Wang ―Packet Classification Using Multidimensional

Cutting‖

7. Bo Xu, Dongyi Jiang, ―HSM: A Fast Packet

Classification Algorithm‖

8. Mrudul Dixit, Anuja Kale, Madhavi Narote, Sneha

Talwalkar, and B. V. Barbadekar ―Fast Packet

Classification Algorithms‖ International Journal of

Computer Theory and Engineering, Vol. 4, No. 6,

December 2012

9. Safaa O. Al-Mamory Wesam S. Bhaya, Anees M. Hadi

―Taxonomy of Packet Classification Algorithms‖ Journal

of Babylon University/Pure and Applied Sciences/ No.(7)/

Vol.(21): 2013

10. Hediyeh Amir Jahanshahi Sistani1, Sayyed Mehdi

Poustchi Amin1 and Haridas Acharya2 Packet

Classification Algorithm Based on Geometric Tree by using

Recursive Dimensional Cutting(DimCut) Research Journal

of Recent Sciences ISSN 2277-2502 Vol. 2(8), 31-39,

August (2013) nternational Science Congress Association
11. Balajee Vamanan*, Gwendolyn Voskuilen* and T. N.

Vijaykumar EffiCuts: Optimizing Packet Classification for

Memory and Throughput, 2011 International Conference on

Advanced Information Networking and Applications

12. Yeim-Kuan Chang and Han-Chen Chen Layered

Cutting Scheme for Packet Classification, SIGCOMM 2010,

August 30-September 3, 2010, New Delhi, India.

