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---------------------------------------------------------ABSTRACT------------------------------------------------------------- 

Assignable algorithms for use with missing data are becoming common- place in microcomputer packages. Specifically, 3 

Assignable algorithms are currently available in existing software packages: the multiple-group approach, full information 

Assignable estimation, and the EM algorithm. Although   they belong to this family of estimator, confusion appears to exist 

over the differences among the 3 algorithms. This article provides a comprehensive, nontechnical overview of the 3 

Assignable algorithms. Multiple imputations, which is frequently used in conjunction with the EM algorithm, is also 

discussed. 
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I.INRODUCTION 

Until recently ,the analysis of data with missing observations 

has been dominated by list wise (LD) and pair wise (PD) 

deletion methods (Kim & Curry, 1977; Roth,1994). 

However, alternative methods for treating missing data have 

become increasingly common in software packages, leaving 

applied researchers with a wide range of data analytic 

options. In particular, three maximum likelihood(ML) 

estimation algorithms for use with missing data are currently 

available: the multiple group 

approach(Allison,1987;Muthén,Kaplan,&Hollis,1987)canbei

mplemented using existing structural equation modeling 

(SEM) 

software;Amos(Arbuckle,1995)andMx(Neale,1995)offerfulli

nformationmaximumlikelihood(FIML) estimation; and at 

least three packages, SPSS 

MissingValues,EMCOV(Graham&Hofer,1993),and 

NORM(Schafer,1998), incorporate the expectation  

maximization (EM) algorithm. The latter two programs 

alsooffermultipleimputation,asoutlinedbyRubin(1987).Theth

eoreticalbenefitsofMLestimationarewidelyknown(Little&Ru

bin,1987),andsimulationstudieshavesuggestedthatMLalgorit

hmsmaybesuperiortotraditionaladhocmissingdatatechniquesi

nmanycases(Arbuckle,1996;Enders&Bandalos,inpress;Muth

énetal.,1987;Wothke,2000).Althoughmuchoftherecentmissin

gdataresearchhasbeenintheareaofSEM,agreatdealofconfusion

apparentlyexistsoverthedifferencesamongthethreeMLmissin

gdataalgorithms.Forexample,asearchoftheSEMNETdiscussio

ngrouparchivesrevealedalargenumberofthreadsandrequestsfo

rclarificationduringrecentyears,andthe frequency of these 

threadsdoesnotappeartobediminishing.Thatconfusionexistsis

probablynotasurpriseandiscertainlynotunwarranted;theMLal

gorithmsappearfundamentallydifferentinmanyrespects,despit

ebelongingtothesameestimationfamily.Althoughanextensive

bodyoftechnicalliteratureexistsonMLmissingdatamethods(D

empster,Laird,&Rubin,1977;Finkbeiner,1979;Hartley&Hock

ing,1971;Little&Rubin,1987),nosinglereferenceisavailableto

appliedresearchersthatsuccinctlysummarizesthesimilaritiesan

ddifferencesamongthealgorithms.Thus,thegoalofthisarticleist

oprovideathorough,nontechnicalprimeronthree widely 

available ML estimation algorithms for use with missing 

data: multiple group analysis, FIML, and the EMalgorithm. 

Multipleimputationalgorithms,whicharefrequentlyusedinconj

unctionwiththeEMalgorithm,willalsobediscussed. 

 

II.MULTIPLE-GROUP APPROACH 

AnearlymethodforobtainingMLparameterestimatesinthepres

enceofmissingdatawasgivenbyHartleyandHocking(1971).Th

eapplicationofthismethodtoSEManalyseswasoutlinedbyAllis

on(1987)andMuthénetal.(1987)andhassincebeenreferredtoast

hemultiplegroupmethod.Inthisprocedure,asampleisdividedint

oGsubgroups,suchthateachsubgrouphasthesamepatternofmis

singdata.Thatis,observationswithineachoftheGsubgroupshav

ethesamesetofvariables present and missing. A likelihood 

function is computed for each of the G groups, and the group 

wise likelihood functions are accumulated across the entire 

sample and maximized. Although mathematically 

unrelated,thisalgorithmislooselyanalogoustoPD;asubgroupgi

contributestotheestimationofallparametersthatinvolvetheobse

rveddatapointsforthatgroupbutdoesnotcontributeto 

parameters that involve missing-data points. 

Assumingmultivariatenormality,theloglikelihoodfunctiongiv

enbyHartley and Hocking (1971) is 

 

−1/2 ∑ 𝑛𝑔[log | ∑ | + 𝑡𝑟(𝑠𝑔𝑔
𝐺
𝑔=1 ∑ ) + 𝑡𝑟(𝐻𝑔 ∑ ) + 𝐶𝑔−1

𝑔
−1
𝑔 ] 
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where Hg(xgg)(xgg)'.For each of the G sub groups, 

ngis the number of observations,g and 

Sgaretheparameterestimatesandsamplemoments,respectively

,Cg is a constant that depends on the 

data,andHgcontainsthevectorofmeanresiduals.BecausetheGs

ubgroupshavedifferentpatternsofmissingdata,thisimpliesthatt

heelementsofxg,g,Sg,andgandaredifferentforeachgroup.To

illustrate,considerasimplemodelcomprisingthreeobservedvari

ables:X1,X2,and X3. Furthermore, suppose a subgroup, g1, 

has complete data on X1 and 

X3,butismissingX2.Thegandgtermsinthegroupwiselikeliho

odfunctionforg1would contain only the parameter estimates 

that involve X1 and X3, as follows: 
 

µ=[µ1-0-µ3] and  =   

𝜎11 0 𝜎13

0 0 0
𝜎31 0 𝜎33

 

 

Similarly,xgandSgwouldcontainthecorrespondingsamplemo

mentstakenfrom the ngcomplete observations in g1.Allison 

(1987) and Muthén et al. (1987) demonstrated how to 

implement 

HartleyandHocking’s(1971)algorithmusingtheLISRELmulti

ple-groupspecification, which maximizes the likelihood 

equation. 

 

−1/2 ∑ 𝑛𝑔[log | ∑ | + 𝑡𝑟(𝑠𝑔𝑔
𝐺
𝑔=1 ∑ ) + 𝐶𝑔−1

𝑔 ] 

 

This function is clearly similar to Equation 1, but does not 

include a term for the vector of mean residuals—LISREL 

does allow for the addition of 

ameanvectorterm,however.IntheusualSEMmultiplegroupanal

ysis,Ggroupsareformedthatrepresentindependentlysampledsu

bpopulations(e.g.,menandwomen),anditistypicallyofinterestt

odeterminewhethersomespecifiedsetofparametersorparamete

r values are common to the G groups. In the missing-data 

application, the subpopulations correspond to the G patterns 

of missing data required by Hartley and Hocking’s 

algorithm. The 

additionalinformationfromthegroupswithpartiallyrecordeddat

aisincorporatedbythespecificationofparameterequalityconstra

ints across the G groups.Despite the wide availability of the 

LISREL program at the time, the 

multiplegroupmethodofmissingdataanalysishadpracticallimit

ationsthatpreventeditswidespreaduse.AspointedoutbyArbuck

le(1996),theLISRELspecificationforthemultiplegroupapproa

chrequiredanexceptionallevelofexpertiseandthus was 

practically limited to situations in which there are only a 

small number of missing-data patterns. 

Muthénetal.(1987)andKaplan(1995)describedsituationsinwhi

chthismightoccur(e.g.,BIBspiraleddesigns),butthenumberofd

istinctmissing-data patterns is often quite 

largeinappliedsettings,makingthemethoddifficulttoimplemen

t.Despitethetechnicaldifficultiesassociatedwithitsimplementa

tion,themultiple group approach does have advantages. First, 

the method can be used to estimate both just-identified (e.g., 

correlation, regression) and 

overidentified(e.g.,SEM)modelparameters.Thisisapointofcon

trastwiththeEMalgorithm,whichcannotcurrentlybeusedtodire

ctlyestimatelinearmodelparameters.Second,itis important to 

note that the multiple-group approach 

doesnotestimate,orimpute,missingobservations,butyieldsdire

ctestimatesofmodelparametersandstandarderrors.Thisisanadv

antage,asadditionalcorrectiveproceduresarenotnecessary to 

obtain standard error estimates. Third, the multiple-group 

approach yields the usual chi-square test statistic for model 

fit, although the degrees of freedom and accompanying p 

value are incorrect due to the use of dummy values in the 

input covariance 

matricesofsubsampleswithmissingvariancecovarianceelemen

ts.However,thisiseasilyremediedbysubtractingthenumberofps

eudovaluesfromthedegreesoffreedomterm.Finally,asabyprod

uctofthemultiplegroupspecification,thechisquarestatisticcana

lsobeusedtotesttheMCARassumption.IftheMCARassumption

holds,parameterestimatesacrosssubgroupsshouldbeequal.Thu

s,thechisquaredifferencetestoftheequalityconstraintsimposed

acrossthe G subgroups is also a test of the MCAR 

assumption; a statistically significant 2 value suggests that 

data are not MCAR. 

 

III.FIML 

Twostructuralequationmodelingsoftwarepackagescurrentlyof

ferFIMLestimationroutinesformissingdata:AMOS(Arbuckle,

1995)andMx(Neale,1995).The FIML approach was 

originally outlined by Finkbeiner (1979) 

forusewithfactoranalysisandissimilartothemultiplegroupmeth

od,exceptthatalikelihoodfunctioniscalculatedattheindividual,

ratherthanthegroup,level.Forthisreason,the FIML approach 

has been referred to as raw maximum likelihood estimation 

(Duncan, Duncan, & Li, 1998; Graham, Hofer, & 

MacKinnon, 1996). 

Like the multiple-group approach, the FIML 

algorithmisconceptuallyanalogoustoPD(althoughmathematic

allyunrelated)inthesensethatallavailabledata is used for 

parameter estimation. An examination of the 

individuallevellikelihoodfunctionillustratesthispoint.Assumi

ngmultivariatenormality,thecase wise likelihood of the 

observed data is obtained by maximizing the function 

 

log 𝐿𝑖=𝐾𝑖-1/2 log│∑𝑖│-1/2log(𝑥𝑖−µ
𝑖
)ˈ∑i

-1(𝑥𝑖−µ
𝑖
) 

  
 

 

wherexiisthevectorofcompletedataforcasei,icontainsthecorre

spondingmeanestimatesderivedfromtheentiresample,andKiis

aconstantthatdependsonthenumberofcompletedatapointsforc

asei.Likei,thedeterminantandinverseofiarebasedonlyontho
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sevariablesthatareobservedforcasei.Theoveralldiscrepancy 

function value is obtained by summing the n case wise 

likelihood functions as follows: 

 
 

log  L(µ-∑)=∑ log  𝐿𝑁
𝑖=1 i 

 

Toillustrate,supposeMLparameterestimatesaresoughtforamo

delcomprisedof three observed variables: X1, X2, and X3. 

The parameters of interest are 

 

 

µ=[µ1-µ2-µ3] and   =   

𝜎11 𝜎12 𝜎13

𝜎21 𝜎22 𝜎23

𝜎31 𝜎32 𝜎33

 

 

ThelikelihoodvalueforanobservationwithX2missingwouldbea

functionofthetwocompleteobservationsaswellastheparameter

estimatesthatinvolvedX1and X3. The relevant parameters are 

shown in the following. 

 

µ=[µ1-0-µ3] and ∑ =   

𝜎11 0 𝜎13

0 0 0
𝜎31 0 𝜎33

 

  

Basedonthepreviousexamples,themathematicalsimilaritiesbet

weenthemultiplegroupandFIMLalgorithmsshouldbeapparent;

theprimarydifferenceisthat 

FIMLfittingfunctionisthesumofncasewiselikelihoodvalues,w

hereasthemulti- plegroup function is the sum of G group 

wise likelihood 

values.SeveralpointsshouldbemadeabouttheFIMLalgorithm.

First,likethemultiplegroupapproach,oneoftheadvantagesofthe

FIMLalgorithmisitsapplicability to both just-identified and 

over-identified models. In the latter case, 

thelikelihoodequationinEquation3isextendedsuchthatthefirst

andsecondordermoments(and,respectively)areexpressedas

functionsofsomeparametervector,(Arbuckle,1996).Assuch,t

hemethodisquitegeneralandcanbeappliedtoawidevarietyofana

lyses,includingtheestimationofmeans,covariancematrices,mu

ltipleregression,andSEM.Second,whenusedinSEMapplicatio

ns,FIMLyieldsachisquaretestofmodelfit.However,thechisqua

restatisticgeneratedby FIML does not take the usual form 

F(N – 1), where F 

isthevalueofthefittingfunction.Clearly,thechisquaretestcannot

becalculatedinthenormalfashion,asthereisnosinglevalueofNth

atisapplicabletotheentiresample.Also,unliketheusualSEMfitti

ngfunctions,thereisnominimumvalueassociatedwiththeFIML 

log-likelihood function, although the value of this statistic 

will 

increaseasmodelfitworsens.Instead,achisquaretestformodelfit

iscalculatedasthedifferenceinloglikelihoodfunctionsbetweent

heunrestricted(H0)andrestricted(H1)moelswithdegreesoffree

domequaltothedifferenceinthenumberofestimatedparameters 

between the two models. Third, although many popular fit 

indexes 

canbecomputedunderFIML,thespecificationofameansstructur

e(requiredforestimation)renderscertainfitindexesundefined(e.

g.,GFI).Fourth,similartoPD,indefinitecovariance matrices are 

a potential byproductof the FIML approach. However, 

Wothke (2000) suggested 

thatindefinitenessproblemsarelesspervasivewithFIMLthanwi

thPD.Fifth,unliketheEMalgorithm(discussedinthefollowing), 

standard error estimates are obtained directly 

fromtheanalysis,andbootstrappingisnotnecessary.Finally,itisi

mportanttonotethattheFIMLalgorithm does not impute 

missing values; only model parameters are estimated. 

 

IV.EM ALGORITHM 

At least three packages currently implement the 

EMalgorithm:SPSSMissingValues,EMCOV(Graham&Hofer

,1993),andNORM(Schafer,1998).An early work by Orchard 

and Woodbury (1972) explicated the underlying method, 

which they called the “missing 

informationprinciple.”Dempsteretal.(1977)providedanextens

ivegeneralizationand illustrationof the methodand 

namedittheEMalgorithm.TheEMalgorithmusesatwostepiterat

iveprocedurewheremissingobservationsarefilledin,orimputed

,andunknownparametersaresubsequentlyestimated.Inthefirsts

tep(theEstep),missingvaluesarereplacedwiththe conditional 

expectation of the missing data 

giventheobserveddataandaninitialestimateofthecovariancema

trix.Thatis,missingvaluesarereplacedbythepredictedscoresfro

maseriesofregressionequationswhereeachmissingvariableisre

gressedontheremainingobservedvariablesforacasei.Usingtheo

bservedand imputed values, the 

sumsandsumsofsquaresandcrossproductsarecalculated.Toillu

strate,supposeameanvectorandcovariancematrix,=(,),isso

ughtforann×Kdatamatrix,Y,thatcontainssetsofobservedandmi

ssingvalues(YobsandYmis,respectively).Usingtheobservedval

ues(Yobs)andcurrentparameterestimates((t)),thecalculations

forthesufficientstatisticsatthetthiterationoftheE step are 

 

 

∑   𝑦𝑖𝑗│
𝑛
𝑖=1 𝑦𝑜𝑏𝑠ˈ𝛳

(+) =∑   𝑦𝑖𝑗
(𝑡)𝑛

𝑖=0     j=1,………k 

 

 

∑ 𝑦𝑖𝑗
𝑛
𝑖=1 𝑦𝑖𝑘│ 𝑦𝑜𝑏𝑠ˈ𝛳

(+)=∑   𝑦𝑖𝑗
(𝑡)𝑛

𝑖=0 𝑦𝑖𝑘
(𝑡)

𝑐𝑗𝑘𝑖
(𝑡)

j,k=1,…k 

 

where 
 

 

𝑦𝑖𝑗
(𝑡)

 =      𝑦𝑖𝑗 ,∑(𝑦𝑖𝑗│𝑦𝑜𝑏𝑠 ,𝛳
(𝑡)),if yij is observed 

if yij is missing 

 
 

 

 

and 
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𝑐𝑖𝑘𝑗
(𝑡)

  =       𝑐𝑜𝑣           𝑦𝑖𝑗,𝑦𝑖𝑘│𝑦𝑜𝑏𝑠, 𝞠(𝒕)  ,if  yij or yik is observed,  

ifyijand yikare missing 

 

Thus, missing values of yijare replaced with conditional 

means and covariance’s given the observed data and the 

current set of parameter estimates.2 It should be noted that 

the preceding formulas can be found in Little and Rubin 

(1987).Inthesecondstep(theMstep),MLestimatesofthemeanv

ectorandcovariancematrixareobtainedjustasiftherewerenomi

ssingdatausingthesufficientstatistics calculated at the 

previous E step. Thus, the M step is simply a complete-data 

ML estimation problem. The resulting covariance matrix 

and 

regressioncoefficientsfromtheMsteparethenusedtoderivenew

estimatesofthemissingvalues.AspointedoutbyLittleandRubin

(1987),missingvaluesarenotnecessarilyreplacedwithactual 

data points, but are replaced by the condition functions of 

the missing values in the complete-data log-likelihood.at the 

next E step, and the 

processbeginsagain.Thealgorithmrepeatedlycyclesthroughth

esetwostepsuntilthedifferencebetweencovariancematricesins

ubsequent M steps falls below some specified convergence 

criterion. Readers are encouraged to consult Little and 

Rubin (1987) for further technical details.Several points 

should be noted concerning the EM algorithm. First, unlike 

the multiple-group and FIML approaches, the EM algorithm 

cannot be used to obtain direct estimates of linear model 

parameters (e.g., regression, SEM); as currently 

implemented, the EM algorithm can only be used to obtain 

ML estimates of a mean vector and covariance matrix. 

Obviously, this matrix can be used for input in subsequent 

linear model analyses. Additionally, the covariance matrix 

can be used to estimate,or impute,missing-datapoints at 

thefinaliteration.The latter approach may, at first glance, be 

appealing due to the illusion of a complete data set, but 

there is a notable drawback associated with thispractice. Al- 

though the imputed values are optimal statistical estimates 

of the missing observations, they lack the residual 

variability present in the hypothetically complete data set; 

the imputed values fall directly on a regression line and are 

thus imputed without a random error component. As a 

result, standard errors from subsequent analyses will be 

negatively biased to some extent, and bootstrap (Efron, 

1981) procedures must be 

employedtoobtaincorrectestimates.Alternatively,multipleim

putationproceduresdesignedtorecoverresidualvariabilityarea

vailableintheEMCOV(Graham&Hofer,1993)andNORM(Sc

hafer,1998) packages and are discussed next. However, it is 

important to note that a correction factor is added to the 

conditional expectation of the 

missingdataateachEsteptocorrectforthisnegativebiasintheout

putcovariancematrix;thisisseeninthecjklEquation5.Although

nostudieshavecomparedtheimpactofthesetwoEMmethodsint

hecontextofSEM,itseemsreasonabletorunanalysesusingtheou

tputcovariancematrixratherthanthesinglyimputeddataset.Des

pitethedifficultiespreviouslynoted,theEMalgorithmmaybepr

eferredinsituationswherethemissingdatamechanism(i.e.,thev

ariablesareassumedtoinfluence messiness) is not included in 

the linear model being tested. This is be- cause the MAR 

assumption discussed previously is defined 

relativetotheanalyzedvariablesinagivendataset.Forexample,i

fthemissingvaluesonavariableYaredependentonthevaluesofa

nothervariableX,theMARassumptionno longer holds if X is 

not included in the 

ultimateanalysis.Thisisclearlyproblematicforthetwodirectesti

mationalgorithms,asXmustbeincorporatedinthesubstantive 

model for MAR to be tenable. However, this is not the case 

with the EM algorithm, as the input covariance matrix used 

to 

estimatesubstantivemodelparametersmaybeasubsetofalarger

covariancematrixproducedfromanEManalysis. In this case, 

the EM mean vector and 

covariancematrixareestimatedusingthefullsetofobservedvari

ables,andtheelementsthatareofsubstantiveinterestareextracte

dforfutureanalyses.Ofcourse,theapplicationoftheEMalgorith

minthisscenarioassumesthattheresearcherhasexplicitknowle

dgeofthemissing-data mechanism, which may not likely be 

the case in practice. Nevertheless, the use of the EM 

algorithm in the manner described previously may make the 

MAR assumption more plausible in certain circumstances. 

 

V.MULTIPLE IMPUTATION 

TheprimaryproblemassociatedwithEMalgorithmisthatthevari

abilityinthehypotheticallycompletedatasetisnotfullycaptured

duringtheimputationprocess.Multipleimputation,asoutlinedb

yRubin(1987),createsm>1imputeddatasetsthatareanalyzedusi

ngstandardcompletedatamethods.Themsetsofparameterestim

atesaresubsequentlypooledintoasinglesetofestimatesusingfor

mulaspro- vided by Rubin. The logic of multiple imputation 

is based on the notion 

thattwosourcesofvariabilityarelostduringtheEMimputationpr

ocess.Asdescribedpreviously,thefirstoccursduetoregressioni

mputation;imputedvaluesfalldirectlyontheregressionlineandt

huslackresidualvariability.Thesecondsourceoflost variability 

is due to the fact that the regression 

equationsarederivedfromacovariancematrixthatis,itself,estim

atedwitherrorduetothemissingdata.Thatis,thecovariancematri

xusedtoimputevaluesisoneofmanyplausiblecovariance 

matrices. The multiple imputation process 

attemptstorestorethelostvariabilityfrombothofthesesources.C

urrently,thereareatleasttwowidelyavailablemultipleimputatio

nprogramsbasedontheEMalgorithm:EMCOV(Graham&Hofe

r,1993) and NORM (Schafer, 

1998).3Althoughconceptuallysimilar,themultipleimputationa

lgorithmsarequitedifferent:EMCOVgeneratesmimputeddatas

etsusingthebootstraptechnique,whereasNORMdoessousingB

ayesiansimulation.Following an initial EM analysis, 
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EMCOV (Graham & Hofer, 1993) restores residual 

variability by adding a randomly sampled (with 

replacement) residual term to each of the imputed data 

points. For every nonmissing-data pointin 

theoriginaldataset,avectorofresidualsforeachvariableiscalcula

tedasthedifference between the actual and predicted values 

from the regression equations (all 

othervariablesservingaspredictors)usedtoimputemissingvalue

s.Next,mdatasetsarecreatedbyrepeatedlyimputingmissingvalu

estotheoriginaldatasetsuchthtm1imputationsarebasedonnewe

stimatesofthecovariancematrix.Inthefirststep,abootstrapisper

formedontheoriginaldata,yieldinganewdatamatrix of the 

same dimensions as the original. 

Next,thebootstrappeddataareanalyzedusingtheEMalgorithm,

andanewestimateofthecovariancematrixisobtained.Finally,mi

ssingvaluesintheoriginaldatasetareimputedusingregressioneq

uationsgeneratedfromthenewcovariancematrix.Thisbootstrap

processisrepeatedm1times(theimputeddatamatrixfromtheorig

inalEManalysisservesasthefirst of the m data sets), and 

residual variation is restored to 

them1setsofimputeddatapointsusingrandomlysampledresidua

lterms,asdescribedpreviously.Incontrast,NORM(Schafer,19

98)usesiterativeBayesiansimulationtogeneratemimputeddat

asets.LiketheEMalgorithm,theNORMalgorithmrepeatedly 

cycles through two steps: Missing 

observationsareimputed(theimputation,orIstep)andunknown

parametersareestimated(theposterior,orPstep).However,unli

keEM,thedataaugmentation(DA)algorithmimplemented in 

NORM uses a stochastic rather than a 

deterministicprocess.Inthefirststep,missingdatapointsarerep

lacedbyrandomlydrawnvaluesfromtheconditionaldistributio

nofthemissingdatagiventheobserveddataandacurrentestimat

eoftheparametervector;parameterestimatesfromanEManal

ysisprovidestartvaluesforthefirstiteration.Next,newparamet

erestimatesarerandomlydrawnfromaBayesianposteriordistri

butionconditionedontheobservedandimputedvaluesfromthef

irststep.Thesenewparametervaluesareusedtoimputevaluesint

hesubsequentIstep,andtheprocessbeginsagain.Thistwosteppr

ocedureisiterateduntilconvergenceoccurs,atwhichpointthefir

stofmimputeddatamatricesiscreatedfromafinalIstep.Additio

nalimputeddatasetsareobtainedbyrepeatingtheDAprocessm1

times.Finally,itshouldbenotedthatthestochastic nature of the 

DA process requires a different convergence criterion than 

theEMalgorithm.BecauseDAparameterestimatesaredrawnra

ndomlyfromaposteriorprobabilitydistribution,valueswillnat

urallyvarybetweensuccessiveiterations, even after 

convergence occurs. Thus, the DA algorithm converges 

when the distribution of the parameter estimates no longer 

changes between 

contiguousiterations.ReadersareencouragedtoconsultSchafe

r(1997)andSchaferand Olsen (1998) for further 

details.After implementing EMCOV or NORM, complete-

data analyses are per- formed on each of the m imputed data 

sets, and the parameter estimates from these analyses are 

stored in a new file. Using rules provided by Rubin (1987), a 

single set of point estimates and standard error values can be 

obtained; both EMCOV and NORM include routines that 

will perform the necessary calculations. Two final points 

should be made regarding multiple imputation. First, Schafer 

(1997) suggested that adequate results could be obtained 

using as few as five imputed data sets. Second, a 

straightforward method of obtaining SEM goodness-of-fit 

tests is not currently available, although work on the topic is 

on- going(Schafer&Olsen,1998). 

 

VI.SUMMARY 

Recent software advances have provided applied researchers 

with powerful options for analyzing data with missing 

observations. Specifically, three 

MLalgorithms(multiplegroupanalysis,FIML,andtheEMalgori

thm)arewidelyavailable in existing software packages. 

However, the wide array of 

dataanalyticoptionshasresultedinsomeconfusionoverthediffer

encesamongthethreealgorithms.Assuch,thegoalofthisarticlew

astoprovideabriefoverviewofMLalgorithmsinhopesthatapplie

dresearcherscanmakeinformeddecisionsregardingthe use of 

ML algorithms in various data analytic settings. the EM 

algorithm may be preferable when the missing-data 

mechanism does not appear in the substantive model. 
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