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-------------------------------------------------------------------ABSTRACT---------------------------------------------------------------  

Grids have emerged as a global cyber-infrastructure for the new-generation of e-Science applications by 

integrating large-scale, distributed and heterogeneous resources. Grid Computing enables scientists and engineers 

to build more and more complex applications to manage and process large data sets, and execute scientific 

experiments on distributed resources. Such applications include complex workflows of resources involved. 

Therefore, more efforts are taken to develop several workflow management systems for Grid computing. In this 

paper, we propose a taxonomy called Grid Venture that captures and classifies various approaches for building 

and executing workflows on Grids. The taxonomy not only focuses on the design and engineering similarities and 

differences in Grid workflow systems, but also identifies the areas that need further research. 
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I. INTRODUCTION 

Grids have emerged as a global cyber-infrastructure for 

the new-generation of e-Science applications by 

integrating large-scale, distributed and heterogeneous 

resources. Scientific communities, such as high energy 

physics, geo physics, astronomy and bioinformatics, are 

utilizing Grids to share, manage and process large data 

sets. In order to support complex scientific experiments, 

distributed resources such as computational devices, data, 

applications, and scientific instruments need to be 

orchestrated while managing the application workflow 

operations within Grid environments [2]. 

 

Workflow deals with the automation of procedures to 

pass files and data between users according to a defined 

set of rules to achieve an overall goal [3]. A workflow 

management system defines, manages and executes 

workflows on computing resources. Applying the 

workflow paradigm for Grid resources management 

offers several advantages such as: 

 

 Ability to build dynamic applications which 

orchestrate distributed resources. 

 To reduce execution costs. 

 To obtain specific processing capabilities. 

 Integration of multiple teams involved in 

managing of different parts of the experiment 

workflow 

 

In the recent years, several Grid workflow systems have 

been developed for defining, managing and executing 

scientific workflows. In order to enhance the way of our  

understanding of the field, we propose a taxonomy that 

primarily (a) captures architectural styles and (b) 

identifies  

design and engineering similarities and differences 

between them. There are a number of proposed 

taxonomies [5][7][10] for distributed and heterogeneous 

computing, However, none of these focuses on 

distributed workflow managements. This taxonomy 

named Grid Venture provides an in-depth understanding 

of building and executing workflows on Grids.  

 

The rest of the paper is organized as follows: Section 2 

presents the taxonomy that classifies approaches based on 

major functions and architectural styles of Grid workflow 

systems. In Section 3, we provide a detailed survey of 

several selected Grid workflow systems and the mapping 

of the proposed taxonomy to the systems. We conclude in 

Section 4 with a discussion and identification of areas that 

need further work. 

 

II. GRID VENTURE TAXONOMY 
 

This taxonomy captures and classifies approaches of 

workflow management in the context of Grid computing. 

It consists of five elements of a Grid workflow 

management system: (a) workflow design, (b) 

information  retrieval, (c) resource scheduling, (d) fault 

tolerance and (e) data transfer. In this section, we look at 

each element and its taxonomy in detail. The fig 1 shows 

the five key components of grid venture taxanomy. 

 

 

 

 

Figure 1. Elements of Grid Venture Taxonomy 

 

 

 

 

Fig : 1 Workflow Design 
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Workflow design includes four key factors, namely (a) 

workflow structure, (b) workflow model, (c) workflow 

composition system, and (d) workflow QoS (Quality of 

Service) constraints. 

 

2.1.1 Workflow structure 

A workflow is composed of multiple tasks connected 

according to their dependencies. The workflow structure, 

also referred as workflow pattern [6], indicates the 

temporal relationship between these tasks. Figure 4 shows 

the workflow structure taxonomy. In general, a workflow 

can be represented as a Directed Acyclic Graph (DAG) 

[8] or a non-DAG. In DAG-based workflow, workflow 

structure can be classified as sequence, parallelism, and 

choice. Sequence can be defined as an ordered series of 

tasks, with one task starting after a previous task has 

completed. Parallelism represents tasks which are 

performed simultaneously, rather than serially. In choice 

control pattern, a task is selected to execute at run-time 

when its associated conditions are true. In addition to all 

patterns found in a DAG-based workflow, a non-DAG 

workflow also contains the iteration structure in which 

sections of workflow tasks in an iteration block are 

allowed to be repeated. Iteration is also known as loop or 

cycle. The iteration structure is quite frequently used in 

scientific applications, where one or more tasks need to 

be executed repeatedly [9]. 

  

2.1.2 Workflow Model 

Workflow Model (also called workflow specification) 

defines a workflow including its task definition and 

structure definition. As shown in Figure 6, there are two 

types of workflow models, namely abstract and concrete. 

They are also referred to as abstract workflows and 

concrete workflows [12].  In an abstract model, a 

workflow is defined in an abstract form in which the 

workflow is provided without referring to specific Grid 

resources for task execution. An abstract model provides 

a flexible way for users to define workflows by hiding 

low-level implementation details. Tasks in an abstract 

model are portable and can be mapped onto any suitable 

Grid services at run-time by using suitable discovery and 

mapping mechanisms. Using abstract models also eases 

the sharing of workflow descriptions between Grid users 

[11]; in particular it benefits the participants of Virtual 

Organizations (VOs). 

In contrast, a concrete model binds workflow tasks to 

specific resources. Concrete models are referred to as 

executable workflows. In some cases, a concrete model 

may include tasks acting as data movement to transfer 

data in and out of the computation and application 

movement to transfer computational code to a data site 

for large scale data analysis. Given the dynamic nature of 

the Grid environment, it is more suitable for users to 

define workflow applications in abstract models. A full or 

partial concrete model can be generated just before or 

during workflow execution according to the current status 

of resources. Additionally, in some systems [14], every 

task in a workflow is concretized only at the time of task 

execution. However, concrete models may be used by 

some end users who want to control the execution 

sequence [15]. 

 

2.1.3 Workflow Composition System 

 

Workflow composition systems are designed for enabling 

users to assemble components into workflows. They need 

to provide a high level view for the construction of Grid 

workflow applications and hide the complexity of 

underlying Grid systems. Workflow composition may be 

either User-directed or automatic systems. User-directed 

composition systems allow users to edit workflows 

directly, whereas automatic composition systems 

generate workflows for users automatically. In general, 

users can use workflow languages for language-based 

modeling and the tools for graph-based modeling to 

compose workflows. Within language-based modeling, 

users may express workflow using a markup language 

such as Extensible Markup Language (XML). Graph-

based modeling allows graphical definition of an arbitrary 

workflow through a few basic graph elements. It allows 

users to work with a graphical representation of the 

workflow. Users can compose and review a workflow by 

just clicking and dropping the components of interest. It 

avoids low-level details and hence enables users to focus 

on higher levels of abstraction at application level [16]. 

The major modeling approaches are Petri Nets, UML 

(Unified Modeling Language).  

 

2.1.4 Workflow QoS Constraints 

 

In a Grid environment, there are a large number of similar 

or equivalent resources provided by different parties. Grid 

users can select suitable resources and use them for their 

workflow applications. These resources may provide the 

same functionality, but optimize different QoS measures. 

In addition, different users or applications may have 

different expectations and requirements. Therefore, it is 

not sufficient for a workflow management system to only 

consider functional characteristics of the workflow. QoS 

requirements such as time limit (deadline) and 

expenditure limit (budget) for workflow execution also 

need to be managed by workflow management systems. 

Users must be able to specify their QoS expectations of 

the workflow at the design level. Then, the actions 

conducted by workflow systems using run-time must be 

chosen according to the initial QoS requirements. 

 

 

 

 

 

 

 

Fig 2: Dimensions of Workflow Constraints 
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Workflow QoS constraints  includes five dimensions: 

time, cost, fidelity, reliability and security. Time is a basic 

measure of performance. For workflow systems, it refers 

to the total time required for completing the execution of 

a workflow. Cost represents the cost associated with the 

execution of workflows including the cost for  managing 

workflow systems and usage charge of Grid resources for 

processing workflow tasks. Fidelity refers to the 

measurement related to the quality of the output of 

workflow execution. Reliability is related to the number 

of failures for execution of workflows. Security refers to 

confidentiality of the execution of workflow tasks and 

trustworthiness of resources. 

 

2.2 Information Retrieval 

 

A Grid workflow management system does not execute 

the tasks itself, but it merely coordinates the execution of 

the tasks by the Grid resources. To map tasks onto 

suitable resources, information about the resources has to 

be retrieved from appropriate sources [10]. There are 

three dimensions of information retrieval: static 

information, historical information and dynamic 

information. Static information refers to information that 

does not vary with time. It may include infrastructure-

related (e.g. the number of processors), configuration-

related (e.g. operating system, libraries), QoS-related (e.g. 

flat usage charge), access-related (e.g. service 

operations), and user-related information (e.g. 

authentication ID). Generally, static information is 

utilized by Grid workflow management systems to 

preselect resources during the initiation of the workflow 

execution. 

 

As Grid resources are not dedicated to the owners of the 

workflow management systems, the Grid workflow 

management system also needs to identify dynamic 

information such as resource accessibility, system 

workload, and network performance during execution 

time. Unlike static information, dynamic information 

reflects the status of the Grid resources, such as load 

average of a cluster, available disk space, CPU usage, and 

active processes. It also includes task execution 

information and market related information such as 

resource price. 

 

Historical information is obtained from previous events 

that have occurred such as performance history and 

execution history of Grid resources and application 

components. Generally, workflow management systems 

can analyze historical information to predict the future 

behaviours of resources and application components on a 

given set of resources. Historical information can also be 

used to improve the reliability of future workflow 

execution.  

 

2.3 Workflow Scheduling 

 

Casavant et al. [19] categorized task scheduling in 

distributed computing systems into ‘local’ task 

scheduling and ‘global’ task scheduling. Local scheduling 

involves handling the assignment of tasks to time-slices 

of a single resource whereas global scheduling involves 

deciding where to execute a task. According to this 

definition, workflow scheduling is a kind of global task 

scheduling as it focuses on mapping and managing the 

execution of inter-dependent tasks on shared resources 

that are not directly under its control. 

 

The workflow scheduler needs to coordinate with diverse 

local management systems as Grid resources are 

heterogeneous in terms of local configuration and 

policies. Taking into account users’ QoS constraints is 

also important in the scheduling process so as to satisfy 

user requirements. In this section, we discuss workflow 

scheduling taxonomy from the view of (a) scheduling 

architecture, (b) decision making, (c) planning scheme, 

(d) scheduling strategy, and (e) performance estimation as 

shown in Fig 3. 

 

 

 

 

 

 

 

Fig 3: Key Factors of Workflow Scheduling 

2.3.1 Scheduling Architecture 

 

The architecture of the scheduling infrastructure is very 

important for scalability, autonomy, quality and 

performance of the system [17]. Three major categories 

of workflow scheduling architecture are centralized, 

hierarchical and decentralized scheduling schemes. In a 

centralized workflow enactment environment, one central 

workflow scheduler makes scheduling decisions for all 

tasks in the workflow. The scheduler has the information 

about the entire workflow and collects information of all 

available processing resources. It is believed that the 

centralized scheme can produce efficient schedules 

because it has all necessary information [13].  

 

Unlike centralized scheduling, both hierarchical and 

decentralized scheduling allow tasks to be scheduled by 

multiple schedulers. Therefore, one scheduler only 

maintains the information related to a sub-workflow. 

Thus, compared to centralized scheduling, they are more 

scalable since they limit the number of tasks managed by 

one scheduler. However, the best decision made for a 

partial workflow may lead to suboptimal performance for 

the overall workflow execution. Moreover, conflict 

problems are more severe Scheduling Architecture. For 

hierarchical scheduling, there is a central manager and 
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multiple lower-level sub-workflow schedulers. This 

central manager is responsible for controlling the 

workflow execution and assigning the subworkflows to 

the low-level schedulers.  

 

2.3.2 Decision Making 

 

There is no single best solution for mapping workflows 

onto resources for all workflow applications, since the 

applications can have very different characteristics. It 

depends to some degree on the application models to be 

scheduled. In general, decisions about mapping tasks in a 

workflow onto resources can be based on the information 

of the current task or of the entire workflow and can be of 

two types, namely local decision and global decision [18]. 

Scheduling decisions made with reference to just the task 

or sub-workflow at hand are called local decisions 

whereas scheduling decisions made with reference to the 

whole workflow are called global decisions. 

 

2.3.3 Planning Scheme 

 

A planning scheme is a method for translating abstract 

workflows to concrete workflows. Schemes for the 

schedule planning of workflow applications can be 

categorized into either static scheme or dynamic scheme. 

In a static scheme, concrete models have to be generated 

before the execution according to current information 

about the execution environment and the dynamically 

changing state of the resources is not taken into account. 

In contrast, a dynamic scheme uses both dynamic 

information and static information about resources to 

make scheduling decisions at run-time. 

 

Static schemes, also known as full-ahead planning, 

include user-directed and simulation-based scheduling. In 

user-directed scheduling, users emulate the scheduling 

process and make resource mapping decisions according 

to their knowledge, preference and/or performance 

criteria. In simulation-based scheduling, the ‘best’ 
schedule is achieved by simulating task execution on a 

given set of resources before a workflow starts execution. 

The simulation can be processed based on static 

information or the result of performance estimation. 

 

Dynamic schemes include prediction-based and just in-

time scheduling. Prediction-based dynamic scheduling 

uses dynamic information in conjunction with some 

results based on prediction. It is similar to simulation-

based static scheduling, in which the scheduler is required 

to predict the performance of task execution on resources 

and generate a near optimal schedule for the task before it 

starts execution. However, it changes the initial schedule 

dynamically during the execution. Rather than making a 

schedule ahead, just in-time scheduling [19] only makes 

scheduling decision at the time of task execution. 

Planning ahead in Grid environments may produce a poor 

schedule, since it is a dynamic environment where 

utilization and availability of resources varies over time 

and a better resource can join at any time.  

 

2.3.4 Scheduling Strategy 

 

In general, scheduling workflow applications in a 

distributed system is an NP-complete problem [10].  

Therefore, many heuristics have been developed to obtain 

near-optimal solutions to match users’ QoS constraints. 

We categorize strategies of major scheduling approaches 

into performance-driven, market-driven and trust-driven. 

Performance-driven strategies try to find a mapping of 

workflow tasks onto resources that achieves optimal 

execution performance such as minimize overall 

execution time. Market-driven strategies employ market 

models to manage resource allocation for processing 

workflow tasks. They apply computational economy 

principle and establish an open electronic marketplace 

between workflow management systems and participating 

resource providers.  

 

Workflow schedulers act as consumers buying services 

from the resource providers and pay some notion of 

electronic currency for executing tasks in the workflow. 

The tasks in the workflow are dynamically scheduled at 

run-time depending on resource cost, quality and 

availability, to achieve the desired level of quality for 

deadline and budget. Unlike the performance-driven 

strategy, market-driven schedulers may choose a resource 

with later deadline if its usage price is cheaper. Trust-

driven schedulers select resources based on their trust 

levels. By using trust-driven approaches, workflow 

management systems can reduce the chance of selecting 

malicious hosts, and non-reputable resources. Therefore, 

overall accuracy and reliability of workflow execution 

will be increased. 

 

2.3.5 Performance Estimation 

 

In order to produce a good schedule, estimating the 

performance of tasks on resources is crucial, especially 

for constructing a preliminary workflow schedule. By 

using performance estimation techniques, it is possible 

for workflow schedulers to predict how tasks in a 

workflow or sub-workflow will behave on distributed 

heterogeneous resources and thus make decisions on how 

and where to run them. There are several performance 

estimation approaches: simulation, analytical modeling, 

historical data, on-line learning, and hybrid.  simulation 

approaches [14] provide resource simulation 

environments to emulate the execution of tasks in the 

workflow prior to its actual execution. In analytical 

modeling a scheduler predicts the performance of tasks in 

workflow on a given set of resources based on an analytic 

metric.  

 

The historical data approach  relies on historical data to 

predict the task’s execution performance. The historical 
data related to a particular user’s application performance 
or experience can also be used in predicting the share of 

available of resources for that user while making 

scheduling decisions based on QoS constraints. The on-
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line learning approach predicts task execution 

performance from on-line experience without prior 

knowledge of the environment’s dynamics. In certain 
conditions, these approaches could be used together in a 

hybrid approach for generating performance evaluation of 

workflow tasks. 

 

2.4 Fault Tolerance 

 
In a Grid environment, workflow execution failure can 

occur for various reasons: the variation in the execution 

environment configuration, non-availability of required 

services or software components, overloaded resource 

conditions, system running out of memory, and faults in 

computational and network fabric components. Grid 

workflow management systems should be able to identify 

and handle failures and support reliable execution in the 

presence of concurrency and failures. Workflow failure 

handling techniques can be divided  into two different 

levels, namely task-level and workflow-level.  

 

Task-level techniques mask the effects of the execution 

failure of tasks in the workflow, while workflow-level 

techniques manipulate the workflow structure such as 

execution flow to deal with erroneous conditions. Task-

level techniques have been widely studied in parallel and 

distributed systems. They can be catalogued into retry, 

alternate resource, checkpoint/restart and replication. The 

retry technique is the simplest failure recovery technique, 

as it simply tries to execute the same task on the same 

resource after failure. The alternate resource technique 

[18] submits failed task to another resource.  

 

The checkpoint/restart technique  moves failed tasks 

transparently to other resources, so that the task can 

continue its execution from the point of failure. The  

 

replication technique runs the same task simultaneously 

on different Grid resources to ensure task execution 

provided that at least one of the replicas does not fail.  

 

Workflow-level techniques include alternate task, 

redundancy, user-defined exception handling and rescue 

workflow. The alternate task technique executes another 

implementation of a certain task if the previous one 

failed, while the redundancy technique executes multiple 

alternative tasks simultaneously. The user-defined 

exception handling allows the users to specify a special 

treatment for a certain failure of a task in workflow. The 

rescue workflow technique ignores the failed tasks and 

continues to execute the remainder of the workflow until 

no more forward progress can be made.  

 

2.5 Data Transfer 

 

For Grid workflow applications, the input files of tasks 

need to be staged to a remote site before processing the 

task. Similarly, output files may be required by their 

children tasks which are processed on other resources. 

Therefore, the intermediate data has to be staged out to 

the corresponding Grid sites. Some systems require users 

to manage intermediate data transfer in the workflow 

specification, rather than providing automatic 

mechanisms to transfer intermediate data. We categorize 

approaches of automatic intermediate data movement into 

centralized, mediated and peer-to-peer. 

 

Basically a centralized approach transfers intermediate 

data between resources via a central point. Centralized 

approaches are easy to implement and suit workflow 

applications in which large-scale data flow is not 

required. In a mediated approach, rather than using a 

central point, the locations of the intermediate data are 

managed by a distributed data management system [17].  

Mediated approaches are more scalable and suitable for 

applications which need to keep intermediate data for 

later use. 

 

A peer-to-peer approach transfers data between 

processing resources. Since data is transmitted from the 

source resource to the destination resource directly 

without involving any third-party service, peer-to-peer 

approaches save the transmission time and reduce the 

bottleneck problem caused by the centralized and 

mediated approaches.  

 

Thus, they are suitable for large-scale intermediate data 

transfer. However, there are more difficulties in 

deployment because they require every Grid node to be 

capable of providing both data management and 

movement service. In contrast, centralized and meditated 

approaches are more suitable to be used in applications 

such as bio-applications, in which users need to monitor 

and browse intermediate results. In addition, they also 

need to record them for future verification purposes. 

 

III. CONCLUSION 
 

We have presented a taxonomy for Grid workflow 

management systems name Grid Venture Taxanomy. The 

taxonomy focuses on workflow design, workflow 

scheduling, resource management, fault management and 

data transfer. At the execution level, the workflow 

scheduling must be able to map the workflow onto Grid 

resources to meet users’ QoS requirements. Therefore, the 
role of market-driven strategies will become increasingly 

important, currently being ignored in most Grid workflow 

management systems. Trust-based scheduling is another 

approach to improve QoS in open distributed systems 

such as Grid and peer-to-peer. It is impossible to make an 

optimal scheduler without knowledge of estimated time 

of task execution. Given the dynamic nature of Grid 

environments, fault tolerance should be fully supported 

by Grid workflow management systems. However, most 

fault handling techniques have not been developed or 

implemented in many Grid workflow systems, especially 

at the workflow execution level. It is hard for a workflow 

management system to survive in real Grid environments 

without robust fault handling techniques. 
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