
International Journal of Advanced Networking & Applications (IJANA)

Volume: 08, Issue: 05 Pages: 114-119 (2017) Special Issue

TECHSA-17, Government Arts College for Women, Ramanathapuram

114

Efficacious Management of Grid Resources by

Grid Venture
M. Janaki

Assistant Professor, Department of Computer Science,

Dr. Umayal Ramanathan College for Women, Karaikudi.

mjanaki81@gmail.com

---ABSTRACT---

Grids have emerged as a global cyber-infrastructure for the new-generation of e-Science applications by

integrating large-scale, distributed and heterogeneous resources. Grid Computing enables scientists and engineers

to build more and more complex applications to manage and process large data sets, and execute scientific

experiments on distributed resources. Such applications include complex workflows of resources involved.

Therefore, more efforts are taken to develop several workflow management systems for Grid computing. In this

paper, we propose a taxonomy called Grid Venture that captures and classifies various approaches for building

and executing workflows on Grids. The taxonomy not only focuses on the design and engineering similarities and

differences in Grid workflow systems, but also identifies the areas that need further research.

Keywords: grid computing, resource management, scheduling, taxonomy, workflow management.

--- ---------------------

I. INTRODUCTION

Grids have emerged as a global cyber-infrastructure for

the new-generation of e-Science applications by

integrating large-scale, distributed and heterogeneous

resources. Scientific communities, such as high energy

physics, geo physics, astronomy and bioinformatics, are

utilizing Grids to share, manage and process large data

sets. In order to support complex scientific experiments,

distributed resources such as computational devices, data,

applications, and scientific instruments need to be

orchestrated while managing the application workflow

operations within Grid environments [2].

Workflow deals with the automation of procedures to

pass files and data between users according to a defined

set of rules to achieve an overall goal [3]. A workflow

management system defines, manages and executes

workflows on computing resources. Applying the

workflow paradigm for Grid resources management

offers several advantages such as:

 Ability to build dynamic applications which

orchestrate distributed resources.

 To reduce execution costs.

 To obtain specific processing capabilities.

 Integration of multiple teams involved in

managing of different parts of the experiment

workflow

In the recent years, several Grid workflow systems have

been developed for defining, managing and executing

scientific workflows. In order to enhance the way of our

understanding of the field, we propose a taxonomy that

primarily (a) captures architectural styles and (b)

identifies

design and engineering similarities and differences

between them. There are a number of proposed

taxonomies [5][7][10] for distributed and heterogeneous

computing, However, none of these focuses on

distributed workflow managements. This taxonomy

named Grid Venture provides an in-depth understanding

of building and executing workflows on Grids.

The rest of the paper is organized as follows: Section 2

presents the taxonomy that classifies approaches based on

major functions and architectural styles of Grid workflow

systems. In Section 3, we provide a detailed survey of

several selected Grid workflow systems and the mapping

of the proposed taxonomy to the systems. We conclude in

Section 4 with a discussion and identification of areas that

need further work.

II. GRID VENTURE TAXONOMY

This taxonomy captures and classifies approaches of

workflow management in the context of Grid computing.

It consists of five elements of a Grid workflow

management system: (a) workflow design, (b)

information retrieval, (c) resource scheduling, (d) fault

tolerance and (e) data transfer. In this section, we look at

each element and its taxonomy in detail. The fig 1 shows

the five key components of grid venture taxanomy.

Figure 1. Elements of Grid Venture Taxonomy

Fig : 1 Workflow Design

International Journal of Advanced Networking & Applications (IJANA)

Volume: 08, Issue: 05 Pages: 114-119 (2017) Special Issue

TECHSA-17, Government Arts College for Women, Ramanathapuram

115

Workflow design includes four key factors, namely (a)

workflow structure, (b) workflow model, (c) workflow

composition system, and (d) workflow QoS (Quality of

Service) constraints.

2.1.1 Workflow structure

A workflow is composed of multiple tasks connected

according to their dependencies. The workflow structure,

also referred as workflow pattern [6], indicates the

temporal relationship between these tasks. Figure 4 shows

the workflow structure taxonomy. In general, a workflow

can be represented as a Directed Acyclic Graph (DAG)

[8] or a non-DAG. In DAG-based workflow, workflow

structure can be classified as sequence, parallelism, and

choice. Sequence can be defined as an ordered series of

tasks, with one task starting after a previous task has

completed. Parallelism represents tasks which are

performed simultaneously, rather than serially. In choice

control pattern, a task is selected to execute at run-time

when its associated conditions are true. In addition to all

patterns found in a DAG-based workflow, a non-DAG

workflow also contains the iteration structure in which

sections of workflow tasks in an iteration block are

allowed to be repeated. Iteration is also known as loop or

cycle. The iteration structure is quite frequently used in

scientific applications, where one or more tasks need to

be executed repeatedly [9].

2.1.2 Workflow Model

Workflow Model (also called workflow specification)

defines a workflow including its task definition and

structure definition. As shown in Figure 6, there are two

types of workflow models, namely abstract and concrete.

They are also referred to as abstract workflows and

concrete workflows [12]. In an abstract model, a

workflow is defined in an abstract form in which the

workflow is provided without referring to specific Grid

resources for task execution. An abstract model provides

a flexible way for users to define workflows by hiding

low-level implementation details. Tasks in an abstract

model are portable and can be mapped onto any suitable

Grid services at run-time by using suitable discovery and

mapping mechanisms. Using abstract models also eases

the sharing of workflow descriptions between Grid users

[11]; in particular it benefits the participants of Virtual

Organizations (VOs).

In contrast, a concrete model binds workflow tasks to

specific resources. Concrete models are referred to as

executable workflows. In some cases, a concrete model

may include tasks acting as data movement to transfer

data in and out of the computation and application

movement to transfer computational code to a data site

for large scale data analysis. Given the dynamic nature of

the Grid environment, it is more suitable for users to

define workflow applications in abstract models. A full or

partial concrete model can be generated just before or

during workflow execution according to the current status

of resources. Additionally, in some systems [14], every

task in a workflow is concretized only at the time of task

execution. However, concrete models may be used by

some end users who want to control the execution

sequence [15].

2.1.3 Workflow Composition System

Workflow composition systems are designed for enabling

users to assemble components into workflows. They need

to provide a high level view for the construction of Grid

workflow applications and hide the complexity of

underlying Grid systems. Workflow composition may be

either User-directed or automatic systems. User-directed

composition systems allow users to edit workflows

directly, whereas automatic composition systems

generate workflows for users automatically. In general,

users can use workflow languages for language-based

modeling and the tools for graph-based modeling to

compose workflows. Within language-based modeling,

users may express workflow using a markup language

such as Extensible Markup Language (XML). Graph-

based modeling allows graphical definition of an arbitrary

workflow through a few basic graph elements. It allows

users to work with a graphical representation of the

workflow. Users can compose and review a workflow by

just clicking and dropping the components of interest. It

avoids low-level details and hence enables users to focus

on higher levels of abstraction at application level [16].

The major modeling approaches are Petri Nets, UML

(Unified Modeling Language).

2.1.4 Workflow QoS Constraints

In a Grid environment, there are a large number of similar

or equivalent resources provided by different parties. Grid

users can select suitable resources and use them for their

workflow applications. These resources may provide the

same functionality, but optimize different QoS measures.

In addition, different users or applications may have

different expectations and requirements. Therefore, it is

not sufficient for a workflow management system to only

consider functional characteristics of the workflow. QoS

requirements such as time limit (deadline) and

expenditure limit (budget) for workflow execution also

need to be managed by workflow management systems.

Users must be able to specify their QoS expectations of

the workflow at the design level. Then, the actions

conducted by workflow systems using run-time must be

chosen according to the initial QoS requirements.

Fig 2: Dimensions of Workflow Constraints

International Journal of Advanced Networking & Applications (IJANA)

Volume: 08, Issue: 05 Pages: 114-119 (2017) Special Issue

TECHSA-17, Government Arts College for Women, Ramanathapuram

116

Workflow QoS constraints includes five dimensions:

time, cost, fidelity, reliability and security. Time is a basic

measure of performance. For workflow systems, it refers

to the total time required for completing the execution of

a workflow. Cost represents the cost associated with the

execution of workflows including the cost for managing

workflow systems and usage charge of Grid resources for

processing workflow tasks. Fidelity refers to the

measurement related to the quality of the output of

workflow execution. Reliability is related to the number

of failures for execution of workflows. Security refers to

confidentiality of the execution of workflow tasks and

trustworthiness of resources.

2.2 Information Retrieval

A Grid workflow management system does not execute

the tasks itself, but it merely coordinates the execution of

the tasks by the Grid resources. To map tasks onto

suitable resources, information about the resources has to

be retrieved from appropriate sources [10]. There are

three dimensions of information retrieval: static

information, historical information and dynamic

information. Static information refers to information that

does not vary with time. It may include infrastructure-

related (e.g. the number of processors), configuration-

related (e.g. operating system, libraries), QoS-related (e.g.

flat usage charge), access-related (e.g. service

operations), and user-related information (e.g.

authentication ID). Generally, static information is

utilized by Grid workflow management systems to

preselect resources during the initiation of the workflow

execution.

As Grid resources are not dedicated to the owners of the

workflow management systems, the Grid workflow

management system also needs to identify dynamic

information such as resource accessibility, system

workload, and network performance during execution

time. Unlike static information, dynamic information

reflects the status of the Grid resources, such as load

average of a cluster, available disk space, CPU usage, and

active processes. It also includes task execution

information and market related information such as

resource price.

Historical information is obtained from previous events

that have occurred such as performance history and

execution history of Grid resources and application

components. Generally, workflow management systems

can analyze historical information to predict the future

behaviours of resources and application components on a

given set of resources. Historical information can also be

used to improve the reliability of future workflow

execution.

2.3 Workflow Scheduling

Casavant et al. [19] categorized task scheduling in

distributed computing systems into ‘local’ task

scheduling and ‘global’ task scheduling. Local scheduling

involves handling the assignment of tasks to time-slices

of a single resource whereas global scheduling involves

deciding where to execute a task. According to this

definition, workflow scheduling is a kind of global task

scheduling as it focuses on mapping and managing the

execution of inter-dependent tasks on shared resources

that are not directly under its control.

The workflow scheduler needs to coordinate with diverse

local management systems as Grid resources are

heterogeneous in terms of local configuration and

policies. Taking into account users’ QoS constraints is

also important in the scheduling process so as to satisfy

user requirements. In this section, we discuss workflow

scheduling taxonomy from the view of (a) scheduling

architecture, (b) decision making, (c) planning scheme,

(d) scheduling strategy, and (e) performance estimation as

shown in Fig 3.

Fig 3: Key Factors of Workflow Scheduling

2.3.1 Scheduling Architecture

The architecture of the scheduling infrastructure is very

important for scalability, autonomy, quality and

performance of the system [17]. Three major categories

of workflow scheduling architecture are centralized,

hierarchical and decentralized scheduling schemes. In a

centralized workflow enactment environment, one central

workflow scheduler makes scheduling decisions for all

tasks in the workflow. The scheduler has the information

about the entire workflow and collects information of all

available processing resources. It is believed that the

centralized scheme can produce efficient schedules

because it has all necessary information [13].

Unlike centralized scheduling, both hierarchical and

decentralized scheduling allow tasks to be scheduled by

multiple schedulers. Therefore, one scheduler only

maintains the information related to a sub-workflow.

Thus, compared to centralized scheduling, they are more

scalable since they limit the number of tasks managed by

one scheduler. However, the best decision made for a

partial workflow may lead to suboptimal performance for

the overall workflow execution. Moreover, conflict

problems are more severe Scheduling Architecture. For

hierarchical scheduling, there is a central manager and

International Journal of Advanced Networking & Applications (IJANA)

Volume: 08, Issue: 05 Pages: 114-119 (2017) Special Issue

TECHSA-17, Government Arts College for Women, Ramanathapuram

117

multiple lower-level sub-workflow schedulers. This

central manager is responsible for controlling the

workflow execution and assigning the subworkflows to

the low-level schedulers.

2.3.2 Decision Making

There is no single best solution for mapping workflows

onto resources for all workflow applications, since the

applications can have very different characteristics. It

depends to some degree on the application models to be

scheduled. In general, decisions about mapping tasks in a

workflow onto resources can be based on the information

of the current task or of the entire workflow and can be of

two types, namely local decision and global decision [18].

Scheduling decisions made with reference to just the task

or sub-workflow at hand are called local decisions

whereas scheduling decisions made with reference to the

whole workflow are called global decisions.

2.3.3 Planning Scheme

A planning scheme is a method for translating abstract

workflows to concrete workflows. Schemes for the

schedule planning of workflow applications can be

categorized into either static scheme or dynamic scheme.

In a static scheme, concrete models have to be generated

before the execution according to current information

about the execution environment and the dynamically

changing state of the resources is not taken into account.

In contrast, a dynamic scheme uses both dynamic

information and static information about resources to

make scheduling decisions at run-time.

Static schemes, also known as full-ahead planning,

include user-directed and simulation-based scheduling. In

user-directed scheduling, users emulate the scheduling

process and make resource mapping decisions according

to their knowledge, preference and/or performance

criteria. In simulation-based scheduling, the ‘best’
schedule is achieved by simulating task execution on a

given set of resources before a workflow starts execution.

The simulation can be processed based on static

information or the result of performance estimation.

Dynamic schemes include prediction-based and just in-

time scheduling. Prediction-based dynamic scheduling

uses dynamic information in conjunction with some

results based on prediction. It is similar to simulation-

based static scheduling, in which the scheduler is required

to predict the performance of task execution on resources

and generate a near optimal schedule for the task before it

starts execution. However, it changes the initial schedule

dynamically during the execution. Rather than making a

schedule ahead, just in-time scheduling [19] only makes

scheduling decision at the time of task execution.

Planning ahead in Grid environments may produce a poor

schedule, since it is a dynamic environment where

utilization and availability of resources varies over time

and a better resource can join at any time.

2.3.4 Scheduling Strategy

In general, scheduling workflow applications in a

distributed system is an NP-complete problem [10].

Therefore, many heuristics have been developed to obtain

near-optimal solutions to match users’ QoS constraints.

We categorize strategies of major scheduling approaches

into performance-driven, market-driven and trust-driven.

Performance-driven strategies try to find a mapping of

workflow tasks onto resources that achieves optimal

execution performance such as minimize overall

execution time. Market-driven strategies employ market

models to manage resource allocation for processing

workflow tasks. They apply computational economy

principle and establish an open electronic marketplace

between workflow management systems and participating

resource providers.

Workflow schedulers act as consumers buying services

from the resource providers and pay some notion of

electronic currency for executing tasks in the workflow.

The tasks in the workflow are dynamically scheduled at

run-time depending on resource cost, quality and

availability, to achieve the desired level of quality for

deadline and budget. Unlike the performance-driven

strategy, market-driven schedulers may choose a resource

with later deadline if its usage price is cheaper. Trust-

driven schedulers select resources based on their trust

levels. By using trust-driven approaches, workflow

management systems can reduce the chance of selecting

malicious hosts, and non-reputable resources. Therefore,

overall accuracy and reliability of workflow execution

will be increased.

2.3.5 Performance Estimation

In order to produce a good schedule, estimating the

performance of tasks on resources is crucial, especially

for constructing a preliminary workflow schedule. By

using performance estimation techniques, it is possible

for workflow schedulers to predict how tasks in a

workflow or sub-workflow will behave on distributed

heterogeneous resources and thus make decisions on how

and where to run them. There are several performance

estimation approaches: simulation, analytical modeling,

historical data, on-line learning, and hybrid. simulation

approaches [14] provide resource simulation

environments to emulate the execution of tasks in the

workflow prior to its actual execution. In analytical

modeling a scheduler predicts the performance of tasks in

workflow on a given set of resources based on an analytic

metric.

The historical data approach relies on historical data to

predict the task’s execution performance. The historical
data related to a particular user’s application performance
or experience can also be used in predicting the share of

available of resources for that user while making

scheduling decisions based on QoS constraints. The on-

International Journal of Advanced Networking & Applications (IJANA)

Volume: 08, Issue: 05 Pages: 114-119 (2017) Special Issue

TECHSA-17, Government Arts College for Women, Ramanathapuram

118

line learning approach predicts task execution

performance from on-line experience without prior

knowledge of the environment’s dynamics. In certain
conditions, these approaches could be used together in a

hybrid approach for generating performance evaluation of

workflow tasks.

2.4 Fault Tolerance

In a Grid environment, workflow execution failure can

occur for various reasons: the variation in the execution

environment configuration, non-availability of required

services or software components, overloaded resource

conditions, system running out of memory, and faults in

computational and network fabric components. Grid

workflow management systems should be able to identify

and handle failures and support reliable execution in the

presence of concurrency and failures. Workflow failure

handling techniques can be divided into two different

levels, namely task-level and workflow-level.

Task-level techniques mask the effects of the execution

failure of tasks in the workflow, while workflow-level

techniques manipulate the workflow structure such as

execution flow to deal with erroneous conditions. Task-

level techniques have been widely studied in parallel and

distributed systems. They can be catalogued into retry,

alternate resource, checkpoint/restart and replication. The

retry technique is the simplest failure recovery technique,

as it simply tries to execute the same task on the same

resource after failure. The alternate resource technique

[18] submits failed task to another resource.

The checkpoint/restart technique moves failed tasks

transparently to other resources, so that the task can

continue its execution from the point of failure. The

replication technique runs the same task simultaneously

on different Grid resources to ensure task execution

provided that at least one of the replicas does not fail.

Workflow-level techniques include alternate task,

redundancy, user-defined exception handling and rescue

workflow. The alternate task technique executes another

implementation of a certain task if the previous one

failed, while the redundancy technique executes multiple

alternative tasks simultaneously. The user-defined

exception handling allows the users to specify a special

treatment for a certain failure of a task in workflow. The

rescue workflow technique ignores the failed tasks and

continues to execute the remainder of the workflow until

no more forward progress can be made.

2.5 Data Transfer

For Grid workflow applications, the input files of tasks

need to be staged to a remote site before processing the

task. Similarly, output files may be required by their

children tasks which are processed on other resources.

Therefore, the intermediate data has to be staged out to

the corresponding Grid sites. Some systems require users

to manage intermediate data transfer in the workflow

specification, rather than providing automatic

mechanisms to transfer intermediate data. We categorize

approaches of automatic intermediate data movement into

centralized, mediated and peer-to-peer.

Basically a centralized approach transfers intermediate

data between resources via a central point. Centralized

approaches are easy to implement and suit workflow

applications in which large-scale data flow is not

required. In a mediated approach, rather than using a

central point, the locations of the intermediate data are

managed by a distributed data management system [17].

Mediated approaches are more scalable and suitable for

applications which need to keep intermediate data for

later use.

A peer-to-peer approach transfers data between

processing resources. Since data is transmitted from the

source resource to the destination resource directly

without involving any third-party service, peer-to-peer

approaches save the transmission time and reduce the

bottleneck problem caused by the centralized and

mediated approaches.

Thus, they are suitable for large-scale intermediate data

transfer. However, there are more difficulties in

deployment because they require every Grid node to be

capable of providing both data management and

movement service. In contrast, centralized and meditated

approaches are more suitable to be used in applications

such as bio-applications, in which users need to monitor

and browse intermediate results. In addition, they also

need to record them for future verification purposes.

III. CONCLUSION

We have presented a taxonomy for Grid workflow

management systems name Grid Venture Taxanomy. The

taxonomy focuses on workflow design, workflow

scheduling, resource management, fault management and

data transfer. At the execution level, the workflow

scheduling must be able to map the workflow onto Grid

resources to meet users’ QoS requirements. Therefore, the
role of market-driven strategies will become increasingly

important, currently being ignored in most Grid workflow

management systems. Trust-based scheduling is another

approach to improve QoS in open distributed systems

such as Grid and peer-to-peer. It is impossible to make an

optimal scheduler without knowledge of estimated time

of task execution. Given the dynamic nature of Grid

environments, fault tolerance should be fully supported

by Grid workflow management systems. However, most

fault handling techniques have not been developed or

implemented in many Grid workflow systems, especially

at the workflow execution level. It is hard for a workflow

management system to survive in real Grid environments

without robust fault handling techniques.

International Journal of Advanced Networking & Applications (IJANA)

Volume: 08, Issue: 05 Pages: 114-119 (2017) Special Issue

TECHSA-17, Government Arts College for Women, Ramanathapuram

119

REFERENCES

[1] W.M.P. van der Aalst and K.M. van Hee, Workflow

Management: models, methods, and Systems. MIT Press,

Cambridge, Mass., USA, 2002.

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, B.

Kiepuszewski and A.P. Barros, Workflow Patterns. URL

http://tmitwww.tm.tue.nl/research/patterns/ [December

2004].

[3] J. H. Abawajy. Fault-Tolerant Scheduling Policy for

Grid Computing Systems. In 18th International Parallel

and Distributed Processing Symposium (IPDPS’04),
Santa Fe, New Mexico, IEEE Computer Society (CS)

Press, Los Alamitos, CA, USA, April 26-30, 2004; 238-

244.

[4] D. Abramson, J. Giddy, and L. Kotler. High

Performance Parametric Modeling with Nimrod/G: Killer

Application for the Global Grid? In 14th International

Parallel and Distributed Processing Symposium (IPDPS

2000), Cancun, Mexico, IEEE CS Press, Los Alamitos,

CA, USA, May 1-5, 2000.

[5] M. Addis, J. Ferris, M. Greenwood, P. Li, D. Marvin,

T. Oinn, and A, Wipat. Experiences with e-Science

Workflow Specification and Enactment in

Bioinformatics, In UK e-Science All Hands Meeting

2003, IOP Publishing Ltd, Bristol, UK, 2003; 459-467.

[6] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T.

Goodale, T. Kielmann, A. Merzky, J. Nabrzyski, J.

Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I.

Taylor. Enabling Applications on the Grid – A GridLab

Overview. International Journal of High Performance

Computing Applications (JHPCA), Special Issue on Grid

Computing: Infrastructure and Applications, SAGE

Publications Inc., London, UK, August 2003.

[7] J. Almond and D. Snelling. Unicore: Secure and

Uniform Access to Distributed Resources via the World

Wideeb. White Paper, October 1998, http://www.fz-

juelich.de/zam/RD/coop/unicore/whitepaper.ps

[December 2004].

[8] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt,

M. Miller, C. Amoreira, Y. Potier, and B. Ludaescher. A

Framework for the Design and Reuse of Grid Workflows,

International Workshop on Scientific Applications on

Grid Computing (SAG'04), LNCS 3458, Springer, 2005.

[9] K. Amin and G. von Laszewski. GridAnt: A Grid

Workflow System. Manual, February 2003,

http://wwwunix. globus.org/cog/projects/gridant/gridant-

manual.pdf [December 2004].

[10] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.

Klein, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,

S. Thatte, I. Trickovic, S. Weerawarana. Business Process

Execution Language for Web Services Version 1.1, 05

May 2003, http://www-

128.ibm.com/developerworks/library/ws-bpel/ [Feb 2005]

[12] D. A. Bacigalupo, S. A. Jarvis, L. He, and G. R.

Nudd. An Investigation into the application of different

performance techniques to e-Commerce applications. In

Workshop on Performance Modelling, Evaluation and

Optimization of Parallel and Distributed Systems, 18th

IEEE International Parallel and Distributed Processing

Symposium (IPDPS), Santa Fe, New Mexico, IEEE CS

Press, Los Alamitos, CA, USA, April 26-30, 2004.

[13] R. Bastos, D. Dubugras, and A. Ruiz. Extending

UML Activity Diagram for Workflow Modeling in

Production Systems. In 35th Annual Hawaii International

Conference on System Sciences (HICSS’02), Big Island,

Hawaii, IEEE CS Press, Los Alamitos, CA, USA,

January 07 -10, 2002.

[14] F. Berman, A. Chien, K. Cooper, J. Dongarra, I.

Foster, D. Gannon, L. Johnsson, K. Kennedy, C.

Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon,

and R. Wolski. The GrADS Project: Software Support for

High-Level Grid Application Development. International

Journal of High Performance Computing

Applications(JHPCA), 15(4):327-344, SAGE

Publications Inc., London, UK, Winter 2001.

[15] I. Brandic, S. Benkner, G. Engelbrecht, and R.

Schmidt, Towards Quality of Service Support for Grid

Workflows, First European Grid Conference (EGC 2005),

Amsterdam, The Netherlands, Feb 2005.

[16] T.D.Braun, H. J. Siegel, N. Beck, L. Bölöni, M.

Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,

and B. Yao. A Taxonomy for Describing Matching and

Scheduling Heuristics for Mixed-Machine Heterogeneous

Computing Systems. In 17th Symposium on Reliable

Distributed Systems. West Lafayette, IN. IEEE CS Press,

Los Alamitos, CA, October 1998: 330-335.

[17] R. Buyya, D, Abramson, and J. Giddy. Nimrod/G:

An Architecture of a Resource Management and

Scheduling System in a Global Computational Grid, HPC

Asia 2000, Beijing, China, IEEE CS Press, Los Alamitos,

CA, USA, May 14-17, 2000; 283-289.

[18] R. Buyya, D. Abramson, and J. Giddy. A Case for

Economy Grid Architecture for Service-Oriented Grid

Computing. In 10th IEEE International Heterogeneous

Computing Workshop (HCW 2001), San Francisco,

California, USA , IEEE CS Press, Los Alamitos, CA,

USA, April 2001.

[19] R. Buyya and S. Venugopal. The Gridbus Toolkit for

Service Oriented Grid and Utility Computing: An

Overview and Status Report. In 1st IEEE International

Workshop on Grid Economics and Business Models,

GECON 2004, Seoul, Korea, IEEE CS Press, Los

Alamitos, CA, USA, April 23, 2004; 19-36.

[20] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G.

R. Nudd. ARMS: An Agent-based Resource Management

System for Grid Computing. Scientific Programming.

Special Issue on Grid Computing, 10(2):135-148, IOS

Press, Amsterdam, Netherlands, 2002.

