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ABSTRACT-Image analytics with high performance is a challenge for the processing of big data, as the image data and the 

video data is a huge amount of big data. This paper will be presented with a case study for image analytics called the parallel 

connected component labeling(CCL). Generally this is the first step in image analytics. The high performance CCL 

implementation can be obtained on the heterogeneous platforms, if the suitable parts of the algorithm are processing on a fine 

grain parallel field programmable gate array (FPGA) along with the multi core processor. The implementation is suitable for 

the processing of big image and video data in motion which results in the reduction of the amount of memory that is required 

by the hardware architecture for different image sizes. 
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I. INTRODUCTION 

 

One of the big data challenges are image analytic tools 

applicable to photos and surveillance videos. Statistics 

indicate that 2.5 quintillion bytes are generated every day. 

Big data is defined based on its main characteristics which 

are growing in three dimensions: volume, velocity and 

variety. In this concept, the unstructured data‘s volume is in 

the scale of petabytes, and creation of them will in the 

fraction of the second. Big data in motion is defined as 

continues data streams at high data transfer rate in the 

literature. Such kind of big data represent the data sets that 

cannot be analyzed with conventional algorithms and 

standard hardware platforms. The processing of the 

continuously increasing amount of data is done online and 

locally on the streamed data due to the typical memory 

capacity and bandwidth limitations, which determine the 

overall throughput. The new scale of volume, velocity and 

variety requires the redesigning a number of infrastructure 

components along with algorithms to support the large- 

volume, complex and growing data. 

 

Combination of field-programmable gate arrays (FPGAs) 

and general-purpose computing on graphic processing units 

(GPGPUs) enable the processing of large scale problems in 

the field of genomics, graph analytics, social network 

analytics, bioinformatics etc. This was not possible before, 

see [5], [6]. For instance, high-performance hybrid core 

system proposed by Convey Computer which pairs Intel 

processors with a coprocessor of FPGAs is able to execute 

data-intensive problems much more effectively [7]. IBM also 

established Netezza- an advance high performance data 

analytical tool that has led to an exponential growth in the 

field of big data analytics. Netezza is based on the IBM 

blade architecture that uses FPGAs for filtering the input 

data before data is being processed. 

 

Scientific data are of 4 kinds: raw data, structured data, 

published data and data linked to the publication [5]. The  

raw data  is generated from observation and experiment     of 

different phenomena. Biological, life sciences and climate 

generate huge amount of scientific data [5,6]. Usually 

Images and videos will have the highest amount of volume in 

scientific data which are analytically prepared to acquire 

additional value [8], [9]. The preparation is done by 

extracting different properties of the image such as objects 

and movements. 

Segmentation is the first step in analytic image processing 

for many video-based applications which is followed by 

connected-component labeling [10]. Connected component 

labeling carries the task of labeling all connected image 

pixels in a binarized image to identify objects or to extract 

required features of a particular object. The throughput of  

the CCL can strongly influence the performance of the whole 

image processing system as it is one of the first complex 

processing steps in image processing applications. Because 

of this purpose, a parallel CCL algorithm having memory- 

efficient architecture is proposed which is suited for high 

performance image processing applications such as image 

analytics. The single pass CCL algorithm is memory  

efficient and therefore mainly suited for FPGAs. It  is 

possible to achieve a high processing throughput by using 

this proposed architecture and algorithm for performing 

connected component labeling of streamed images without 

the necessity of buffering a full image, which will cause a 

performance limitation either due to limited FPGA-internal 

memory or due to limited FPGA-external memory 

bandwidth. 

 

II. RELATED WORK 

 

Connected component labeling (CCL) is the first step in 

image analytics algorithms. Recently more sophisticated 

single pass algorithms have gained interest as an alternative 

to the classical two-pass CCL algorithm for reconfigurable 

computing. After two scans of the same image, the CCL 

algorithm will be completed and these have the sequential 

dependencies. This results in the requirement  of  high 

amount of storage and memory for storing full images. To 

store the full image and labels, a memory with the same size 
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as the original image is required. The labels are  

characterized by the place of the pixel within a particular 

image. If the pixel belongs to the background area of the 

image a special background label is used, otherwise its label 

is determined by the labels of adjacent pixels. 

 

Baily et al. proposed FPGA based single pass architectures 

[12]. There are two drawbacks with the proposed 

architecture: Its worst case memory requirement is related to 

the height and width of the image being processed, and also 

due to the lack of parallelism in which one pixel is processed 

per clock cycle causing a performance bottleneck in stream 

processing. Ma et al. reduced the memory requirements [13] 

of the algorithm significantly described in [14] by reusing  

the labels. As of this result, the required worst case memory 

is proportional to the width of the processed image. Kumar  

et al. proposed a parallel architecture which enhances the 

single pass algorithm that is used in [15]. The main aim is to 

store the whole images in prior to processing. In order to 

have the performance speed-up, the image is divided into 

different slices, and different CCL units have to process them 

independently. After this, each of the line from the image 

slice is fetched sequentially at a time in a round robin 

manner, and each CCL unit sends a vector to a global FIFO 

memory which acts as a vector collector. The vector mainly 

indicates the regions of the processed image slice except the 

edges. In the next step, a coalescing unit (CU) determines 

whether two regions of adjacent slices are connected and 

belong to the same object by processing one or both border 

of the image slice. 

 

It is necessary to connect the CCL units to the CU to perform 

the merging operation of neighboring image slices in the 

round-robin manner. To have a successful merging, each 

edge region must have a unique, distinguishable label in its 

image slice. To overcome the limitations of [13] a modified 

version was proposed [16] which reduces drastically the 

amount of memory needed for processing by using twokinds 

of labels, slice local label and slice global labels. In this 

paper, a CU was introduced that improve the real-time 

processing of CCL architecture by merging the results of 

image slices in a memory-efficient way. 

 

III. VIDEO AND IMAGE ANALYTICS FRAMEWORK 

 

Image analytics needs the processing of videos and images to 

transform pixel level information to object based information 

for the analysis of certain properties specific for the 

considered application domain. The domain  includes 

science, industrial measurement techniques or life science 

applications. Videos are taken as sequence of images with a 

specific frame rate. The frame rate may reach up to several 

hundred or thousand frames per second or more for high- 

speed scientific applications, in such a way that the video 

data of a single image sensor are in the range of 1 to 10 

Gigabytes per second or 0.1 to 1 Petabyte per day. To 

overcome with this big data in motion, a high performance 

reconfigurable computing framework is proposed in this 

section. The framework is composed  of a high-speed   input 

data  stream  and  a  heterogeneous  platform  based  on high 

performance reconfigurable computing devices making use 

of field programmable gate arrays (FPGA) and multi-core 

CPUs to which the image processing functions are mapped 

jointly. As shown in Figure 1, the input data stream is 

connected via several high speed links to the FPGAs that are 

able to acquire and analyze images as well as videos with a 

very high frame rate in real-time. Therefore, the framework 

based on the heterogeneous platform is equipped with 

integrated image processing capabilities such as 

segmentation, component labeling and feature extraction. 
 

 

Figure 1. High performance reconfigurable computing 

framework for processing real-time image stream 

processing 

 

The image processing steps, which enable a huge data 

reduction from GBytes of Pixel data to only KBytes of 

abstract object descriptors - so called feature vectors, are 

transferred to the multi-core CPU. This reduction allows the 

framework to output information on every object in every 

frame even in real-time for very high frame rates. The 

amount of data which has to be transferred from the FPGA is 

reduced by several orders of magnitude in this way. Image 

segmentation and feature extraction are the tasks for image 

processing architecture realized on the FPGA. 

Segmentation is the process of separating the objects from 

the background when certain threshold is applied. By making 

use of this method all pixels having an intensity value over a 

certain threshold are considered as an object and are 

converted to black. And all pixels below this threshold are 

converted to white and considered as background. The  

binary image is generated from the original image 

accordingly. The major importance in this case is that the 

threshold value for separating the objects from the 

background. The method proposed in [17] is used for 

segmentation by generating a histogram of the captured 

grayscale image of a scientific application in the field of 

spray process, as seen in Figure 2. The threshold value is 

calculated  by using the  arithmetic  mean value of the     two 
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peaks detected in the histogram, which represents the objects 

and the background. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Grayscale raw image taken by image sensor 

and its histogram. 

 

 

The next step is feature extraction based on connected 

component labeling. The main challenge is processing high 

image frame rate in real-time which requires high bandwidth 

in the range of 10 to 100 Gbit/s. To overcome this problem,  

a highly optimized and sophisticated architecture is used. 

Because of the limited resources in the embedded systems, 

algorithms which are especially dedicated to FPGA 

architectures have been proposed [12,13, 14, 16]. 
 

 

Figure 3. Segmentation of grayscale image with 

calculated threshold value. 

 

Figure 4 shows the architecture of sequential processing [13] 

which consists of several components that can be described 

as follows: the neighborhood context block provides four 

registers A, B, C and D consisting of four previously 

processed pixels connected to the present pixel. A, B and C 

contain the label of the previous row and D contains the 

previous pixel label. For caching the new labels The row 

buffer block is used, as they are not saved in a temporary 

image. The key difference from [11] to [13] is that the labels 

are reused in every row, and cause the reduction in the need 

for memory. 

 

As a result of mergers on the previous row, the merger table 

decides the equality. The translation table modifies a label 

allocated to the pervious row to the current new label. The 

label for the current pixel is selected in the label selection 

block based on the labels of its neighborhood. 

The data merging unit records the features of each region by 

monitoring the labels of the pixels in the neighborhood 

context block. Each region will have one entry in the data 

merging unit indexed by the region's label. Whenever a 

region is updated, even its entry in the data merging unit is 

also updated. 
 

 

Figure 4. Connected Component LabelingArchitecture 

proposed in [13] 

 

A bounding box is defined by A and B, two coordinates. 

Coordinate A indicates the upper left corner and coordinate 

B indicates the lower right corner. To extract the bounding 

box for each object the structure and the merging process 

within the data merging unit is proposed [4 ,6]. 

 

To provide bounding box extraction, the data merging unit 

has to be changed as shown in Figure 5. The modified block 

has two inputs a and b. One for providing the currently 

processed pixel‘s coordinates and the other one for giving 

information on the neighbor pixels label. The input data is 

read from the corresponding data table. To find the bounding 

box for two entries of the data table the following equations 

are used. 

 

= , )         (1) 

 

= , ) (2) 

)  (3) 

=max  )        (4) 
 

Figure 5. Data Merging Unit for extracting several 

features of the image objects simultaneously. 
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A parallelization approach is proposed in order to handle 

high data throughput. Therefore, the image is divided into 

different slices, and each slice is processed separately in 

parallel. In each slices the objects are identified and clubbed 

by a central unit called the coalescing unit. As a result 

different pixels are processed simultaneously and speedup 

based on the number of image slices can be obtained. 

 
 

Figure 6. Binarized image after thresholding. 

 
 

Figure 7. Extracted object features for all sub-images. 
 

 

Figure 8. Merged object features for input image. 

 

Figure 6 to Figure 8 show the processing steps for feature 

extraction. Binary image after the segmentation is shown in 

Figure 6. In the next step, the image is divided into many 

image slices for processing in CCL processing units that 

work in parallel. The bounding box is extracted by each CCL 

proceeding unit, as it is shown in Figure 7. The bounding 

boxes touching the slice borders will be merged together to 

have the correct result which is the last step. This step is 

depicted in Figure 8. 

 

IV. EXPERIMENTAL RESULTS 

The experimental data to examine the potential of 

heterogeneous systems including reconfigurable logic 

devices and general purpose processors (GPP) in the context 

of an image processing system for big data analytics is given. 

For this examination the approaches from [14], [11] and [16] 

are evaluated on both reconfigurable logic devices and in 

software on a general purpose processor. The approach in 

[16] gains a speedup from dividing the image in different 

vertical slices using the architecture from [14] as slice 

processors and merging the results using a coalescing unit. 

The results for the implementation on a single FPGA where 

parallelism is inherently used and in software for different 

image sizes on a single core are given in Table 1. 

 

For the implementation of an array of slice processing units 

(SPU) having up to 100 SPUS on a single FPGA was 

realized, in which all are processing an individual image 

parallely. For the software implementation the classical two- 

pass algorithm [11] is used to process one image on a single 

core of a general purpose processor (GPP). 

 

TABLE I. CCL-BENCHMARK CPU VS. FPGA 

 

 

 

 

 

 

 

 

 

 

 

When comparing the throughput of the software 

implementation on a GPP and the dedicated architecture on 

an FPGA, the bandwidth of the FPGA architecture for CCL 

is one to two orders of magnitude higher. The hardware 

architecture is highly optimized to the FPGA structure, while 

for the presented software solution further research has to be 

done to make a proper comparison, but no decrease in 

speedup by less than one order of magnitude can be 

expected. This allows the FPGA architecture to process an 

image stream consisting of several different image slices 

simultaneously in real-time. For the case of processing a 

single image, only one slice processing unit of the SPU array 

can be used. Still the FPGA architecture accelerates the 

processing by approximately a factor of 2 compared to a 

single GPP core. By using the parallelization scheme from 

[16], several slice processing units can be used to process a 

single image in parallel enabling a higher throughput. Figure 

9 through Figure 11 show the results for this approach where 

the coalescing unit is realized for FPGAs. Depending on the 

image size up to 4.5 GPixels/s can be processed. To study  

the performance of the coalescing process on a GPP, a 

prototype implementation of a software version of the 

coalescing unit was realized. The result for the throughput 

given in Table 2 can be achieved for the case that the feature 

vectors provided by the slice processing units are already 

 Hardware Platform 

Image size CPU FPGA Result 

Width Height Gigapixels/s Cores 

# 

Gigapixels/s Area 

% 

Speedu 

128 128 0,063011 1 15,3 8 242 

256 256 0,06277 1 11,3 43 182 

512 512 0,06286 1 12,3 81 198 

1024 512 0,06189 1 9,1 93 146 

2048 1024 0,06062 1 6,9 83 114 
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stored in the systems RAM and can be accessed at full 

memory bandwidth. 

 
 

Figure 9. Achievable frame rate for an image with 0.5 

Megapixels. 

 
 

Figure 10. Achievable frame rate for an image with 2.1 

Megapixels. 

 

Figure 11. Achievable frame rate of maximum 800 fps for 

an image with 6.3 MegaPixels and a throughput of 5 

Gigapixels per second. 

 

TABLE II. SOFTWARE COALESCING: 

 

 

THR 

OUG 

HPU 

T IN 

GIG 

API 
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SEC 

the sequential algorithm of the coalescing process are better suited 

for a GPP software implementation. Considering the performance 

results of both slice processing units and the coalescing unit on a 

heterogeneous platform, the conclusion is that the slice processing 

units should be implemented on a FPGAs and the coalescing unit 

should be implemented on a GPP in order to achieve maximum 

performance for big data image analytics. Achieving a throughput 

of 5 Gigapixel/s is equivalent to 0.4 Petabytes per day, so the 

implementation on a heterogeneous platform with a single mid- 

sized FPGA can be scaled up linearly with a several FPGAs and 

processor cores under the condition that several different images 

are processed in parallel. Beyond these performance 

considerations, mapping the irregular data structure and the 

sequential part of the algorithm, which is the coalescing algorithm, 

to the GPP is of advantage because of its higher processing 

frequency. For the regular data structures used in the slice 

processing units carrying out the parallel part of the algorithm, the 

FPGA achieves a higher throughput due to its parallel architecture. 

 

V. CONCLUSION 

 

Images and videos have the highest amount of volume 

among big data and therefore high performance image 

processing plays a very important role for image analytics. In 

this paper, we have investigated a parallel component 

labeling algorithm including feature extraction with a broad 

set of features as an important part of an image analytics 

framework. It is shown here that the performance of the 

proposed parallel component labeling algorithm with 

generalized feature extraction is accelerated and optimized if 

it is mapped to and executed on a heterogeneous hardware 

platform based on a fine-grained field-programmable gate 

array and a multi-core processor. For the parallelized 

connected component labeling (CCL) algorithm of this 

paper, the required memory compared to the requirement of 

algorithms known in the literature is reduced significantly on 

a heterogeneous hardware platform for typical image sizes 

even when compared to similar sliced parallel single pass 

CCL algorithms and architectures such that memory size nor 

memory bandwidth of the hardware platform has an impact 

on the performance. The basic structure of the algorithm and 

architecture is a set of parallel CCL units generating feature 

data of image slices being coalesced in a separate and 

subsequent coalescing unit. In order to achieve 

highest performance, it was shown that the parallel CCL 

units should be implemented on fine-grained FPGAs and the 

coalescing unit should be implemented in software on a 

multi-core processor. With the achieved throughput of 5 

Gigapixels per second or 0.4 Petabytes per day the 

implementation on such a heterogeneous platform with a 

single mid-sized FPGA can be scaled up linearly with a 

plurality of FPGAs. Thus, the concept has been proven to be 

ideally suited for high performance image analytics for big 

data in motion. 
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