
International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 28

Provision of Securing Data in Cloud through

Auditing and Deduplication

Sandhya rani G.V
1

,Naveen Ghorpade
2

, Dhananjaya V
3
, K Prakash

4

1,4
Dept .of CSE, JNTUA, Aanatapur-01 ,

2,3
Dept. of CSE, VTU, Bangalore-90,

Chintujob.blr@gmail.com ,naveen.ghorpade@gmail.com, csdhananjay@gmail.com, prakashkpmkp@gmail.com

Abstract— Outsourcing storage into the cloud is economically attractive for the cost and complexity of long-term large-

scale data storage. At the same time, though, such a service is also eliminating data owners' ultimate control over the fate of

their data, which data owners with high service-level requirements have traditionally anticipated. Specifically, aiming at

achieving both data integrity and deduplication in cloud, we propose two secure systems, namely SecCloud and SecCloud+.

SecCloud+ enables the guarantee of file confidentiality. The challenge of deduplication on encrypted is the prevention of

dictionary attack. SecCloud introduces an auditing entity with maintenance of a MapReduce cloud. SecCloud+ is designed

motivated by the fact that customers always want to encrypt their data before uploading, and enables integrity auditing and

secure deduplication on encrypted data.

Keywords: SecCloud, SecCloud+, deduplication, MapReduce.

I. INTRODUCTION

Cloud storage provides customers with benefits, ranging

from cost saving and simplified convenience, to mobility

opportunities and scalable service. Even though cloud

storage system has been widely adopted, it fails to

accommodate some important emerging needs such as the

abilities of auditing integrity of cloud files by cloud clients

and detecting duplicated files by cloud servers. Even though

cloud storage system has been widely adopted, it fails to

accommodate some important emerging needs such as the

abilities of auditing integrity of cloud files by cloud clients

and detecting duplicated files by cloud servers. We illustrate

both problems below. The first problem is integrity auditing.

The cloud server is able to relieve clients from the heavy

burden of storage management and maintenance. These

concerns originate from the fact that the cloud storage is

susceptible to security threats from both outside and inside

of the cloud [1], and the uncontrolled cloud servers may

passively hide some data loss Incidents from the clients to

maintain their reputation. Considering the large size of the

outsourced data files and the clients’ constrained resource

capabilities, the first problem is generalized as how can the

client efficiently perform periodical integrity verifications

even without the local copy of data files.

The second problem is secure deduplication. The rapid

adoption of cloud services is accompanied by increasing

volumes of data stored at remote cloud servers. This fact

raises a technology namely deduplication, in which the

cloud servers would like to deduplicate by keeping only a

single copy for each file (or block) and make a link to the

file (or block) for every client who owns or asks to store the

same file (or block).

Thus, the second problem is generalized as how can the

cloud servers efficiently confirm that the client (with a

certain degree assurance) owns the uploaded file (or block)

before creating a link to this file (or block) for him/her.

In this paper, aiming at achieving data integrity and

deduplication in cloud, we propose two secure systems

namely SecCloud and SecCloud+.

SecCloud introduces an auditing entity with maintenance of

a MapReduce cloud, which helps clients generate data tags

before uploading as well as audit the integrity of data having

been stored in cloud. SecCloud is supported on both block

level and sector level. In addition, SecCloud also enables

secure deduplication. A design a proof of ownership

protocol between clients and cloud servers, which allows

clients to prove to cloud servers that they exactly own the

target data. Motivated by the fact that customers always

want to encrypt their data before uploading, for reasons

ranging from personal Privacy to corporate policy, we

introduce a key server into SecCloud as with [4] and

propose the SecCloud+ schema. SecCloud+ enables the

guarantee of file confidentiality. The challenge of

deduplication on encrypted is the prevention of dictionary

attack [4]. As with [4], we make a modification on

convergent encryption such that the convergent key of file is

generated and controlled by a secret “seed”, such that any

adversary could not directly derive the convergent key from

the content of file and the dictionary attack is prevented.

II. LITERATURE SURVEY

We review the works in both areas in the following

subsections, respectively.

A. Integrity Auditing

The definition of provable data possession (PDP) was

introduced by Ateniese et al. [5] [6] for assuring that the

cloud servers possess the target files without retrieving or

downloading the whole data. PDP is a probabilistic proof

protocol by sampling a random set of blocks and asking the

servers to prove that they exactly possess these blocks, and

the verifier only maintaining a small amount of metadata is

able to perform the integrity checking. Ateniese et al. [7]

proposed a dynamic PDP schema but without insertion

operation; Erway et al. [8] improved Ateniese et al.’s work

[7] and supported insertion by introducing authenticated flip

table; A similar work has also been contributed in [9]. Wang

mailto:Chintujob.blr@gmail.com
mailto:%2Cnaveen.ghorpade@gmail.com
mailto:csdhananjay@gmail.com
mailto:prakashkpmkp@gmail.com

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 29

et al. [10] proposed proxy PDP in public clouds. Zhu et al.

[11] proposed the cooperative PDP in multi-cloud storage.

Line of work supporting integrity auditing is proof of

retrievability (POR) [12]. Compared with PDP, POR not

merely assures the cloud servers possess the target files, but

also guarantees their full recovery. In [12], clients apply

erasure codes and generate authenticators for each block for

verifiability and retrievability. Wang et al. [13] improved

the POR model by manipulating the classic Merkle hash tree

construction for block tag authentication. Xu and Chang

[14] proposed to improve the POR schema in [12] with

polynomial commitment for reducing communication cost.
Stefanov et al. [15] proposed a POR protocol over

authenticated file system subject to frequent changes.

Azraoui et al. [16] combined the privacy-preserving word

search algorithm with the insertion in data segments of

randomly generated short bit sequences, and developed a

new POR protocol. Li et al. [17] considered a new cloud

storage architecture with two independent cloud servers for

integrity auditing to reduce the computation load at client

side. Recently, Li et al. [18] utilized the key-disperse

paradigm to fix the issue of a significant number of

convergent keys in convergent encryption.

B. Secure Deduplication

Deduplication is a technique where the server stores only a

single copy of each file, such that the disk space of cloud

servers as well as network bandwidth are saved. Trivial

client side deduplication leads to the leakage of side channel

information. In order to restrict the leakage of side channel

information, Halevi et al. [3] introduced the proof of

ownership protocol which lets a client efficiently prove to a

server that that the client exactly holds this file. Pietro and

Sorniotti [19] proposed an efficient proof of ownership

scheme by choosing the projection of a file onto some

randomly selected bit-positions as the file proof.

Line of work for secure deduplication focuses on the

confidentiality of deduplicated data and considers to make

deduplication on encrypted data. Ng et al. [20] firstly

introduced the private data deduplication as a complement

of public data deduplication protocols of Halevi et al. [3].

Convergent encryption [21] is a promising cryptographic

primitive for ensuring data privacy in deduplication. Bellare

et al. [22] formalized this primitive as message-locked

encryption, and explored its application in space-efficient

secure outsourced storage. Abadi et al. [23] further

strengthened Bellare et al’s security definitions [22] by

considering plaintext distributions that may depend on the

public parameters of the schemas. Regarding the practical

implementation of convergent encryption for securing

deduplication, Keelveedhi et al. [4] designed the DupLESS

system in which clients encrypt under file-based keys

derived from a key server via an oblivious pseudorandom

function protocol.

III. ALGORITHMS USED AND COMPUTATION

Some preliminary notions that will form the foundations of

our approach.

A. Convergent Algorithm

Convergent encryption [22][23][21] provides data

confidentiality in deduplication. A user (or data owner)

derives a convergent key from the data content and encrypts

the data copy with the convergent key. In addition, the user

derives a tag for the data copy, such that the tag will be used

to detect duplicates. Here, we assume that the tag

correctness property [22] holds, i.e., if two data copies are

the same, then their tags are the same. Formally, a

convergent encryption scheme can be defined with four

primitive functions:

• KeyGen (F): The key generation algorithm takes a file

content F as input and outputs the convergent key ckF of F.

• Encrypt (ckF; F): The encryption algorithm takes the

convergent key ckF and file content F as input and outputs

the ciphertext ctF.

• Decrypt (ckF; ctF): The decryption algorithm takes the

convergent key ckF and ciphertext ctF as input and outputs

the plain file F.

• TagGen (F): The tag generation algorithm takes a file

content F as input and outputs the tag tagF of F. Notice that

in this paper, we also allow TagGen (·) to generate the

(same) tag from the corresponding ciphertext as with

[22][18].

B. Bilinear Map and Computational Assumption

Definition 1 (Bilinear Map): Let G and GT be two cyclic

multiplicative groups of large prime order p. A bilinear

pairing is a map e : G × G → GT with the following

properties:

• Bilinear: e(ga1 ; gb2) = e(g1; g2)ab for all g1; g2 ∈ R G

and a; b ∈ R Zp.

• Non-degenerate: There exists g1; g2 ∈ G such that e(g1;
g2) = 1.
• Computable: There exists efficient algorithm to compute

e(g1; g2) for all g1; g2 ∈ R G.

The examples of such groups can be found in super singular

elliptic curves or hyper elliptic curves over finite fields, and

the bilinear pairings can be derived from the Weil or Tate

pairings. For more details, see [24]. We then describe the

Computational Diffie-Hellman problem, the hardness of

which will be the basis of the security of our proposed

schemes.

Definition 2 (CDH Problem): The Computational Diffie-

Hellman problem is that, given g; gx; gy ∈ G1 for unknown

x; y ∈ Z∗ p, to compute gxy.

IV. SECCLOUD

In this section, we describe our proposed SecCloud system.

we begin with giving the architecture of SecCloud as well as

introducing the design goals for SecCloud. Aiming at

allowing for auditable and deduplicated storage, we propose

the SecCloud system. In the SecCloud system, we have

three entities:

• Auditor which helps clients upload and audit their

outsourced data maintains a Map Reduce cloud and acts like

a certificate authority.

• Cloud Servers virtualize the resources according to the

requirements of clients and expose them as storage pools.

• Cloud Clients have large data files to be stored and rely on

the cloud for data maintenance and computation. They can

be either individual consumers or commercial

Organizations.

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 30

Fig. 1. SecCloud Architecture

The SecCloud system supporting file-level deduplication

includes the following three protocols respectively

highlighted in Fig. 1.

File Uploading Protocol: This protocol aims at allowing

clients to upload files via the auditor. Specifically, the file

uploading protocol includes three steps:

• Step 1: (cloud client → cloud server): client performs the

duplicate check with the cloud server to confirm if such a

file is stored in cloud storage or not before uploading a file.

If there is a duplicate, another protocol called Proof of

Ownership will be run between the client and the cloud

storage server. Otherwise, the following protocols

(including step 2 and step 3) are run between these two

entities.

• Step 2 (cloud client → auditor): client uploads files to the

auditor, and receives a receipt from auditor.

• Step 3 (auditor → cloud server): auditor helps generate a

set of tags for the uploading file, and send them along with

this file to cloud server.

Integrity Auditing Protocol: It is an interactive protocol

for integrity verification and allowed to be initialized by any

entity except the cloud server. In this protocol, the cloud

server plays the role of prover, while the auditor or client

works as the verifier. This protocol includes two phases:

• Step 1 (cloud client/auditor → cloud server): verifier (i.e.,

client or auditor) generates a set of challenges and sends

them to the prover (i.e., cloud server).

• Step 2 (cloud server → cloud client/auditor): based on the

stored files and file tags, prover (i.e., cloud server) tries to

prove that it exactly owns the target file by sending the

proof back to verifier (i.e., cloud client or auditor).

At the end of this protocol, verifier outputs true if the

integrity verification is passed.

Proof of Ownership Protocol: It is an interactive protocol

initialized at the cloud server for verifying that the client

exactly owns a claimed file. This protocol is typically

triggered along with file uploading protocol to prevent the

leakage of side channel information. On the contrast to

integrity auditing protocol, in POW the cloud server works

as verifier, while the client plays the role of prover. This

protocol also includes two steps:

• Step 1 (cloud server → client): cloud server generates a set

of challenges and sends them to the client.

• Step 2 (client → cloud server): the client responds with the

proof for file ownership, and cloud server finally verifies the

validity of proof.

Our main objectives are outlined as follows:

• Cost-Effective: The computational overhead for providing

integrity auditing and secure deduplication should not

represent a major additional cost to traditional cloud storage,

nor should they alter the way either uploading or

downloading operation.

• Integrity Auditing: The first design goal of this work is to

provide the capability of verifying correctness of the

remotely stored data. The integrity verification further

requires two features: 1) public verification, which allows

anyone, not just the clients originally stored the file, to

perform verification; 2) stateless verification, which is able

to eliminate the need for state information maintenance at

the verifier side between the actions of auditing and data

storage.

• Secure Deduplication: The second design goal of this

work is secure deduplication. In other words, it requires that

the cloud server is able to reduce the storage space by

keeping only one copy of the same file. Notice that,

regarding to secure deduplication, our objective is

distinguished from previous work [3] in that we propose a

method for allowing both deduplications over files and tags.

B. SecCloud Details

In this subsection, we respectively describe the three

protocols including file uploading protocol, integrity

auditing protocol and proof of ownership protocol in

SecCloud. Before our detailed elaboration, we firstly

introduce the system setup phase of SecCloud, which

initializes the public and private parameters of the system.

• System Setup: The auditor working as an authority picks a

random integer _ ∈ R Zp as well as random elements g; u1;

u2; : : : ut ∈ R G, where t specifies the maximum number of
sectors in a file block. The secret key sk is set to be _ and
kept secret, while the public key pk = (g_; {ui}t i=1) is
published to other entities.

File Uploading Protocol: Based on the public and private

parameters generated in system setup, we then describe the

file uploading protocol. Suppose the uploading file F has s

blocks: B1;B2; : : : ;Bs, and each block Bi for i = 1; 2; : : : ;

s contains t sectors: Bi1;Bi2; : : : ;Bit. Let n be the number

of slave nodes in the MapReduce cloud. The client runs the

deduplication test by sending hash value of the file Hash (F)

to the cloud server. If there is a duplicate, the cloud client

performs Proof of Ownership protocol with the cloud server

which will be described later. If it is passed, the user is

authorized to access this stored file without uploading the

file. Otherwise (in the second phase), the cloud client

uploads a file F as well as its identity IDF to the distributed

file system in MapReduce auditing cloud, and

simultaneously sends an “upload” request to the master node

in MapReduce, which randomly picks {_i}ni =1 such that Σn

i=1 _i = _ and assigns the ith slave node with _i. When each

slave node (say the ith salve node) receives the assignment

_i, it does two steps: 1) Pick up (IDF;F) in the distributed

file system in MapReduce, and build a Merkle hash tree on

the blocks {Bj}sj=1 of F. 2) Let hroot denote the hash of the

root node of Merkle hash tree built on F. This slave node

uses _i to sign hroot by computing _i = h_iroot. Finally, the

signature _i is sent to the the slave node which is specified

by master node for executing the reducing procedure. The

specified slave node for reducing procedure gathers all the

signatures {_i} ni =1 from the other slave nodes, and

computes _ = Πn i=1 _i. The “reduced” signature _ is finally

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 31

sent back to client as receipt of the storage of file F. In the

third phase, the MapReduce auditing cloud starts to upload

the file F to cloud server. To allow public auditing, the

master node builds file tags of F. Specifically, master node

firstly writes and arranges all the sectors of F in a matrix

(we say S), and computes a homographic signature for each

row of the matrix S (highlighted red in Fig. 3). Notice that

the tag generation procedure also follows the computing

paradigm with MapReduce. That is, for the ith (i = 1; 2; : : :

; s) row of S, the jth (j = 1; 2; : : : ; n) slave node computes

_ij = [Hash(IDF||Bi) Πt k=1 uBik k]_j , where Σn j=1 _j =

_. Accordingly, all the signatures {_ij} nj =1 are then

multiplied into the homomorphic signature _i = Πn j=1 _ij at

a specified reducing slave node. The homomorphic

signature allows us to in future aggregate the signatures

signed on the sectors in the same column of S using

multiplication. Finally, the master node uploads (ID;F;

{_i}si =1) to cloud server.

Integrity Auditing Protocol: In the integrity auditing
protocol, either the MapReduce auditing cloud or the client

works as the verifier. Thus, without loss of generality, in the

rest of the description of this protocol, we use verifier to
identify the client or MapReduce auditing cloud. The

auditing protocol is designed in a challenge-response model.

Specifically, the verifier randomly picks a set of block
identifiers (say IF) of F and asks the cloud server (working

as prover) to response the blocks corresponding to the
identifiers in IF. In order to keep randomness in each time

of challenge, even for the same IF, we introduce a random

coefficient for each block in challenge. That is, for each

identifier i ∈ IF, the coefficient ci for the block identified by

i is computed as ci = f (tm||IDF||i), where f(·) is a
pseudorandom function and tm is the current time period.

Finally, C = {(i; ci)}i∈ IF is sent to cloud server for
challenge.

Proof of Ownership Protocol: The POW protocol aims at

allowing secure deduplication at cloud server. Specifically,

in deduplication, a client claims that he/she has a file F and

wants to store it at the cloud server, where F is an existing

files having been stored on the server. The cloud server asks

for the proof of the ownership of F to prevent client

unauthorized or malicious access to an unowned file through

making cheating claim. In SecCloud, the POW protocol is

similar to [3] and the details are described as follows.

Suppose the cloud server wants to ask for the ownership

proof for file F. It randomly picks a set of block identifiers,

say IF ⊆ {1; 2; s} where s is the number of blocks in F, for

challenge. Upon receiving the challenge set IF, the client

first computes a short value and constructs a Merkle tree.

Note that only sibling-paths of all the leaves with challenged

identifiers are returned back to the cloud server, who can

easily verify the correctness by only using the root of the

Merkle tree. If it is passed, the user is authorized to access

this stored file.

V. SECCLOUD+

We specify that our proposed SecCloud system has achieved

both integrity auditing and file deduplication. However, it

cannot prevent the cloud servers from knowing the content

of files having been stored. In other words, the

functionalities of integrity auditing and secure deduplication

are only imposed on plain files. In this section, we propose

SecCloud+, which allows for integrity auditing and

deduplication on encrypted files.

A. System Architecture

Compared with SecCloud, our proposed SecCloud+

involves an additional trusted entity, namely key server,

which is responsible for assigning clients with secret key

(according to the file content) for encrypting files. This

architecture is in line with the recent work [4]. But our work

is distinguished with the previous work [4] by allowing for

integrity auditing on encrypted data. SecCloud+ follows the

same three protocols (i.e., the file uploading protocol, the

integrity auditing protocol and the proof of ownership

protocol) as with SecCloud. The only difference is the file

uploading protocol in SecCloud+ involves an additional

phase for communication between cloud client and key

server. That is, the client needs to communicate with the key

server to get the convergent key for encrypting the

uploading file before the phase 2 in SecCloud. Unlike

SecCloud, another design goals of file confidentiality is

desired in SecCloud+ as follows.

• File Confidentiality: The design goal of file

confidentiality requires to prevent the cloud servers from

accessing the content of files. Specially, we require that the

goal of file confidentiality needs to be resistant to

“dictionary attack”. That is, even the adversaries have pre-

knowledge of the “dictionary” which includes all the

possible files, they still cannot recover the target file [4].

B. SecCloud+ Details

We introduce the system setup phase of SecCloud+ as

follows.

• System Setup: As with SecCloud, the auditor initializes
the public key pk = (g_; {ui}t i=1) and private key sk = _,

where g; u1; u2; : : : ; ut ∈ R G. In addition, to preserve the
confidentiality of files, initially, the key server picks a

random key k for further generating file encryption keys,
and each client is assigned with a secret key ck for

encapsulating file encryption keys. Based on the initialized

parameters, we then respectively describe the three
protocols involved in SecCloud+.

File Uploading Protocol: Suppose the uploading file F has

s blocks, say B1;B2; : : : ;Bs, and each block Bi for i = 1; 2;
: : : ; s contains t sectors, say Bi1;Bi2; : : : ;Bit.Client

computes hF = Hash(F) by itself. In addition, for each sector

Bij of F where i = 1; 2; : : : ; s and j = 1; 2; : : : ; t, client

computes its hash hBij = Hash(Bij). Finally (hF;

{hBi}i=1;:::;s;j=1;:::;t) is sent to key server for generating

the convergent keys for F. Upon receiving the hashes, the

key server computes sskF = f(ks; hF) and sskij = f(ks; hBij)

for i = 1; : : : ; s and j = 1; : : : ; t, where ks is the

convergent key seed kept at the key server, and f(·) is a

pseudorandom function. It is worthwhile nothing that, 1) We

take advantage of the idea of convergent encryption

[21][22][23] to make the deterministic and “content

identified” encryption, in which each “content” (file or

sector) is encrypted using the session key derived from

itself. In this way, different “contents” would result in

different cipher texts, and deduplication works. 2)

Convergent encryption suffers from dictionary attack, which

allows the adversary to recover the whole content with a

number of guesses. To prevent such attack, as with [4], a

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 32

“seed” (i.e., convergent key seed) is used for controlling and

generating all the convergent keys to avoid the fact that

adversary could guess or derive the convergent key just

from the content itself. 3) We generate convergent keys on

sector-level (i.e., generate convergent keys for each sector in

file F), to enable integrity auditing. Specifically, since

convergent encryption is deterministic, it allows to compute

homomorphic signatures on (convergent) encrypted data as

with on plain data, and thus the sector-level integrity

auditing is preserved. Client then continues to encrypt F

sector by sector and uploads the ciphertext to auditor.

Specifically, for each sector Bij of F, i = 1; 2; : : : ; s and j =

1; 2; : : : ; t, client computes ctBij = Enc(sskBij ;Bij), and

sends (IDF; {ctBij }i=1;:::;s;j=1;:::;t) to auditor, where

Enc(·) is the symmetric encryption algorithm. The

convergent keys sskij are encapsulated by client’s secret key

ck and directly stored at the cloud servers.

Integrity Auditing Protocol: The integrity auditing
protocol works in the same way of that in SecCloud, but
imposed on encrypted data. Specifically, the verifier (could
be either the client or the auditor) submits a set of pairs {(i;

ci)}i∈ IF where IF ⊆ {1; 2; : : : ; s} and ci ∈ R Z. Upon

receiving {(i; ci)}i∈ IF , the cloud servers then computes !j =

Σ i∈ IF cictBij for each j = 1; 2; : : : ; t, as well as the

aggregated homomorphic signature _ = Π i∈IF _ci i . In
addition, the cloud server constructs a Merkle hash tree on
encrypted blocks ctBi of F and attempts to prove

retrievability at block-level. Precisely, for each i ∈ IF, the
cloud server computes a pair (Hash(ctBi);Ωi), where ctBi =
[ctBi1 ; : : : ; ctBit] and Ωi includes the necessary auxiliary
information for reconstructing the root node using {ctBi

}i∈IF . Finally (_; {!j}t j=1; {(Hash(ctBi);Ωi)}i∈IF) is sent

to verifier for auditing.

VI. SECURITY ANALYSIS

In this section, we attempt to analyze the security of our

proposed both schemes. Before this, we firstly formalize the

security definitions our schemes aim at capturing.

A. Security Definitions

Based on the paradigm of SecCloud and SecCloud+, we

define the security definitions, adapting to the integrity

auditing and secure deduplication goals. Our both

definitions capture the philosophy of game-based definition.

Specifically, we define two games respectively for integrity

auditing and secure deduplication, and both of the games are

played by two players, namely adversary and challenger.

The adversary (the role of which is worked by semi-honest

cloud server and cloud client respectively in integrity

auditing and secure deduplication definition) is trying to

achieve the goal condition explicitly specified in the game.

Having this intuition, we give our security definitions as

follows.

1) Integrity Auditing: An integrity auditing protocol is

sound if any cheating cloud server that convinces the

verifier that it is storing a file F is actually storing this file.

To capture this spirit, we define its game based on Proof of

Retrievability (PoR). The security model called Proof of

Retrievability (PoR) was introduced by Shacham and

Waters’ in [12]. This security model captures the

requirement for integrity auditing, whose basic security goal

is to achieve proof of retrievability. In more details, in this

security model, if there exists an adversary who can forge

and generate any valid integrity proofs for any file F with a

non-negligible probability, another simulator can be

constructed who is able to extract F with overwhelming

probability. The formal definition for the above model can

be given by the following game between a challenger and an

adversary A. Note that in the following security game, the

challenger plays the role of auditing server while the

adversary A acts as the storage server.

• Setup Phase: The challenger runs the setup algorithm with

required security parameter and other public parameter as

input. Then, it generates the public and secret key pair (pk;

sk). The public key pk is forwarded to the adversary A.

• Query phase: The adversary is allowed to query the file

upload oracle for any file F. Then, the file with the correct

tags are generated and uploaded to the cloud storage server.

These tags can be publicly verified with respect to the public

key pk.

• Challenge Phase: A can adaptively send file F to the file

tag tag comes, C runs the integrity verification protocol

Integrity Verify {A C (pk; tag)} with A.

• Forgery: A outputs a file tag tag′ and the description of a

prover Pt.

Secure Deduplication: Similarly, we can also define a

game between challenger and adversary for secure

deduplication below. Notice that the game for secure

deduplication captures the intuition of allowing the

malicious client to claim it has a challenge file F through

colluding with all the other clients not owning this file.

• Setup Phase: A challenge file F with fixed length and

minimum entropy (specified in system parameter) is

randomly picked and given to the challenger. The challenger

continues to run a summary algorithm and generate a

summary sumF.

• Learning Phase: Adversary F can setup arbitrarily many

client accomplices not exactly having F and have them to

interact with the cloud servers to try to prove the ownership

of file F. Notice that in the learning phase, the cloud server

plays as the honest verifier with input sum sumF and the

accomplices could follow any arbitrary protocol set by A.

• Challenge Phase: The exact proof of ownership protocol

is executed. Specifically, the challenger outputs a challenge

to A and A responses with a proof based on its learnt

knowledge. If A’s proof is accepted by the cloud server, we

say A succeeds.

VII. PERFORMANCE ANALYSIS

In this section, we will provide a thorough experimental

evaluation of our proposed schemes. We build our test bed

by using 64-bit t2.Micro Linux servers in Amazon EC2

platform as the auditing server and storage server. In order

to achieve _ = 80 bit security, the prime order p of the

bilinear group G and GT are respectively chosen as 160 and

512 bits in length. We also set the block size as 4 KB and

each block includes 25 sectors. It is clear the time cost of

slave node is growing with the size of file. This is because

the more blocks in file, the more homomorphic signatures

are needed to be computed by slave node for file uploading.

We also need to notice that there does not exist much

computational load difference between common slave nodes

and the reducer. Compared with the common slave nodes,

reducer only additionally involves in a number of

multiplications, which is lightweight operation. It is

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 33

worthwhile noting that, the procedure of tag generation (the

phase 2 and 3 in file uploading protocol) could be handled in

pre-processing, and it is not necessary for client to wait until

uploading file. Before examine the time cost of file auditing,

we need to firstly make analysis and identify the number of

challenging blocks (i.e., |IF|) in our integrity auditing

protocol. According to [5], if _ fraction of the file is

corrupted, through asking the proof of a constant m blocks

of this file, the verifier can detect the misbehaviour with

probability _ = 1 − (1 − _) m. To capture the spirit of

probabilistic auditing, we set the probability confidence _ =

70%; 85% and 99%, and draw the relationships between _

and m in Fig. 6. It demonstrates that if we want to achieve

low (i.e., 70%), medium (i.e., 85%) and high (i.e., 99%)

confidence of detecting any small fraction of corruption, we

have to respectively ask for 130; 190 and 460 blocks for

challenge.

VIII. CONCLUSION

Aiming at achieving both data integrity and deduplication in

cloud, we propose SecCloud and SecCloud+. SecCloud

introduces an auditing entity with maintenance of a

MapReduce cloud, which helps clients generate data tags

before uploading as well as audit the integrity of data having

been stored in cloud. In addition, SecCoud enables secure

deduplication through introducing a Proof of Ownership

protocol and preventing the leakage of side channel

information in data deduplication. Compared with previous

work, the computation by user in SecCloud is greatly

reduced during the file uploading and auditing phases.

SecCloud+ is an advanced construction motivated by the

fact that customers always want to encrypt their data before

uploading, and allows for integrity auditing and secure

deduplication directly on encrypted data.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science

Foundation of China (No.61100224 and No. 61472091),

NSFCGuangdong (U1135002) and Natural Science

Foundation of Guangdong Province (Grant No.

S2013010013671).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,

and M. Zaharia, “A view of cloud computing,”

Communication of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] J. Yuan and S. Yu, “Secure and constant cost public

cloud storage auditing with deduplication,” in IEEE

Conference on Communications and Network Security

(CNS), 2013, pp. 145–153.

[3] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg,

“Proofs of ownership in remote storage systems,” in

Proceedings of the 18th ACM Conference on Computer and

Communications Security. ACM, 2011, pp. 491–500.

[4] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Dupless:

Serveraided encryption for deduplicated storage,” in

Proceedings of the 22Nd USENIX Conference on Security,

ser. SEC’13. Washington, D.C.: USENIX Association,

2013,pp.179–194.[Online].

Available:https://www.usenix.org/conference/usenixsecurity

13/technicalsessions/presentation/bellare.

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable data

possession at untrusted stores,” in Proceedings of the 14th

ACM Conference on Computer and Communications

Security, ser. CCS ’07. New York, NY, USA: ACM, 2007,

pp. 598– 609.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan,
L. Kissner, Z. Peterson, and D. Song, “Remote data

checking using provable data possession,” ACM Trans. Inf.

Syst. Secur., vol. 14, no. 1, pp. 12:1–12:34, 2011.

[7] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik,
“Scalable and efficient provable data possession,” in

Proceedings of the 4
th

International Conference on Security
and Privacy in Communication Netowrks, ser. SecureComm
’08. New York, NY, USA: ACM, 2008, pp. 9:1–9:10.

[8] C. Erway, A. K¨upc¸ ¨u, C. Papamanthou, and R.

Tamassia, “Dynamic provable data possession,” in

Proceedings of the 16th ACM Conference on Computer and

Communications Security, ser. CCS ’09. New York, NY,

USA: ACM, 2009, pp. 213–222.

[9] F. Seb´e, J. Domingo-Ferrer, A. Martinez-Balleste, Y.

Deswarte, and J.-J. Quisquater, “Efficient remote data

possession checking in critical information infrastructures,”

IEEE Trans. on Knowl. and Data Eng., vol. 20, no. 8, pp.

1034–1038, 2008.

[10] H. Wang, “Proxy provable data possession in public

clouds,” IEEE Transactions on Services Computing, vol. 6,

no. 4, pp. 551–559, 2013. [11] Y. Zhu, H. Hu, G.-J. Ahn,

and M. Yu, “Cooperative provable data

Possession for integrity verification in multicloud storage,”

IEEE Transactions on Parallel and Distributed Systems,

vol. 23, no. 12, pp. 2231– 2244, 2012.

[12] H. Shacham and B. Waters, “Compact proofs of

retrievability,” in Proceedings of the 14th International

Conference on the Theory and Application of Cryptology

and Information Security: Advances in Cryptology, ser.

ASIACRYPT ’08. Springer Berlin Heidelberg, 2008, pp.

90–107.

[13] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,

“Enabling public verifiability and data dynamics for storage

security in cloud computing,” in Computer Security –

ESORICS 2009, M. Backes and P. Ning, Eds., vol. 5789.

Springer Berlin Heidelberg, 2009, pp. 355–370.

[14] J. Xu and E.-C. Chang, “Towards efficient proofs of

retrievability,” in Proceedings of the 7th ACM Symposium

on Information, Computer and Communications Security,

ser. ASIACCS ’12. New York, NY, USA: ACM, 2012, pp.

79–80.

[15] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris:

A scalable cloud file system with efficient integrity checks,”

in Proceedings of the 28th Annual Computer Security

Applications Conference, ser. ACSAC ’12. New York, NY,

USA: ACM, 2012, pp. 229–238.

[16] M. Azraoui, K. Elkhiyaoui, R. Molva, and M. O¨ nen,

“Stealthguard: Proofs of retrievability with hidden

watchdogs,” in Computer Security - ESORICS 2014, ser.

Lecture Notes in Computer Science, M. Kutyłowski and J.

Vaidya, Eds., vol. 8712. Springer International Publishing,

2014, pp. 239–256.

[17] J. Li, X. Tan, X. Chen, and D. Wong, “An efficient

proof of retrievability with public auditing in cloud

computing,” in 5th International Conferenc on Intelligent

http://www.usenix.org/conference/usenixsecurity

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 34

Networking and Collaborative Systems (INCoS), 2013, pp.

93–98.

[18] J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou,

“Secure deduplication with efficient and reliable convergent

key management,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 6, pp. 1615–1625, June

2014.
[19] R. Di Pietro and A. Sorniotti, “Boosting efficiency and

security in proof of ownership for deduplication,” in

Proceedings of the 7th ACM Symposium on Information,

Computer and Communications Security, ser. ASIACCS

’12. New York, NY, USA: ACM, 2012, pp. 81–82.

[20] W. K. Ng, Y. Wen, and H. Zhu, “Private data

deduplication protocols in cloud storage,” in Proceedings of

the 27th Annual ACM Symposium on Applied Computing,

ser. SAC ’12. New York, NY, USA: ACM, 2012, pp. 441–

446.

[21] J. Douceur, A. Adya, W. Bolosky, P. Simon, and M.

Theimer, “Reclaiming space from duplicate files in a

serverless distributed file system,” in 22nd International

Conference on Distributed Computing Systems, 2002, pp.

617–624.

[22] M. Bellare, S. Keelveedhi, and T. Ristenpart,

“Message-locked encryption and secure deduplication,” in

Advances in Cryptology – EUROCRYPT 2013, ser. Lecture

Notes in Computer Science, T. Johansson and P. Nguyen,

Eds. Springer Berlin Heidelberg, 2013, vol. 7881, pp. 296–

312.

[23] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and

G. Segev, “Message-locked encryption for lock-dependent

messages,” in Advances in Cryptology – CRYPTO 2013, ser.

Lecture Notes in Computer Science, R. Canetti and J. Garay,

Eds. Springer Berlin Heidelberg, 2013, vol. 8042, pp. 374–

391.

[24] D. Boneh and M. Franklin, “Identity-based encryption

from the weil pairing,” in Advances in Cryptology —

CRYPTO 2001, ser. Lecture Notes in Computer Science, J.

Kilian, Ed. Springer Berlin Heidelberg, 2001, vol. 2139, pp.

213–229.

	I._INTRODUCTION
	II._Literature_Survey
	III._ALGORITHMS_USED_AND_COMPUTATION
	V._SECCLOUD+

