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Abstract— Outsourcing storage into the cloud is economically attractive for the cost and complexity of long-term large- 

scale data storage. At the same time, though, such a service is also eliminating data owners' ultimate control over the fate of 

their data, which data owners with high service-level requirements have traditionally anticipated. Specifically, aiming at 

achieving both data integrity and deduplication in cloud, we propose two secure systems, namely SecCloud and SecCloud+. 

SecCloud+ enables the guarantee of file confidentiality. The challenge of deduplication on encrypted is the prevention of 

dictionary attack. SecCloud introduces an auditing entity with maintenance of a MapReduce cloud. SecCloud+ is designed 

motivated by the fact that customers always want to encrypt their data before uploading, and enables integrity auditing and 

secure deduplication on encrypted data. 
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I. INTRODUCTION 

Cloud storage provides customers with benefits, ranging 

from cost saving and simplified convenience, to mobility 

opportunities and scalable service. Even though cloud 

storage system has been widely adopted, it fails to 

accommodate some important emerging needs such as the 

abilities of auditing integrity of cloud files by cloud clients 

and detecting duplicated files by cloud servers. Even though 

cloud storage system has been widely adopted, it fails to 

accommodate some important emerging needs such as the 

abilities of auditing integrity of cloud files by cloud clients 

and detecting duplicated files by cloud servers. We illustrate 

both problems below. The first problem is integrity auditing. 

The cloud server is able to relieve clients from the heavy 

burden of storage management and maintenance. These 

concerns originate from the fact that the cloud storage is 

susceptible to security threats from both outside and inside  

of the cloud [1], and the uncontrolled cloud servers may 

passively hide some data loss Incidents from the clients to 

maintain their reputation. Considering the large size of the 

outsourced data files and the clients’ constrained resource 

capabilities, the first problem is generalized as how can the 

client efficiently perform periodical integrity verifications 

even without the local copy of data files. 

The second problem is secure deduplication. The rapid 

adoption of cloud services is accompanied by increasing 

volumes of data stored at remote cloud servers. This fact 

raises a technology namely deduplication, in which the  

cloud servers would like to deduplicate by keeping only a 

single copy for each file (or block) and make a link to the  

file (or block) for every client who owns or asks to store the 

same file (or block). 

Thus, the second problem is generalized as how can the 

cloud servers efficiently confirm that the client (with a 

certain degree assurance) owns the uploaded file (or block) 

before creating a link to this file (or block) for him/her. 

In this paper, aiming at achieving data integrity and 

deduplication in cloud, we propose two secure systems 

namely SecCloud and SecCloud+. 

SecCloud introduces an auditing entity with maintenance of 

a MapReduce cloud, which helps clients generate data tags 

before uploading as well as audit the integrity of data having 

been stored in cloud. SecCloud is supported on both block 

level and sector level. In addition, SecCloud also enables 

secure deduplication. A design a proof of ownership  

protocol between clients and cloud servers, which allows 

clients to prove to cloud servers that they exactly own the 

target data. Motivated by the fact that customers  always 

want to encrypt their data before uploading, for reasons 

ranging from personal Privacy to corporate policy, we 

introduce a key server into SecCloud as with [4] and  

propose the SecCloud+ schema. SecCloud+ enables the 

guarantee of file confidentiality. The challenge of 

deduplication on encrypted is the prevention of dictionary 

attack [4]. As with [4], we make a modification on 

convergent encryption such that the convergent key of file is 

generated and controlled by a secret “seed”, such that any 

adversary could not directly derive the convergent key from 

the content of file and the dictionary attack is prevented. 

 
II. LITERATURE SURVEY 

 
We review the works in both areas in the following 

subsections, respectively. 

 
A. Integrity Auditing 

The definition of provable data possession (PDP) was 

introduced by Ateniese et al. [5] [6] for assuring that the 

cloud servers possess the target files without retrieving or 

downloading the whole data. PDP is a probabilistic proof 

protocol by sampling a random set of blocks and asking the 

servers to prove that they exactly possess these blocks, and 

the verifier only maintaining a small amount of metadata is 

able to perform the integrity checking. Ateniese et al. [7] 

proposed a dynamic PDP schema but without insertion 

operation; Erway et al. [8] improved Ateniese et al.’s work 

[7] and supported insertion by introducing authenticated flip 

table; A similar work has also been contributed in [9]. Wang 
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et al. [10] proposed proxy PDP in public clouds. Zhu et al. 

[11] proposed the cooperative PDP in multi-cloud storage. 

Line of work supporting integrity auditing is proof of 

retrievability (POR) [12]. Compared with PDP, POR not 

merely assures the cloud servers possess the target files, but 

also guarantees their full recovery. In [12], clients apply 

erasure codes and generate authenticators for each block for 

verifiability and retrievability. Wang et al. [13] improved  

the POR model by manipulating the classic Merkle hash tree 

construction for block tag authentication. Xu and  Chang 

[14] proposed to improve the POR schema in [12] with 

polynomial commitment for reducing communication cost. 
Stefanov et al. [15] proposed a POR protocol over 

authenticated file system subject to frequent changes. 

Azraoui et al. [16] combined the privacy-preserving word 

search algorithm with the insertion in data segments of 

randomly generated short bit sequences, and developed a 

new POR protocol. Li et al. [17] considered a new cloud 

storage architecture with two independent cloud servers for 

integrity auditing to reduce the computation load at client 

side. Recently, Li et al. [18] utilized the key-disperse 

paradigm to fix the issue of a significant number of 

convergent keys in convergent encryption. 

 

B. Secure Deduplication 

Deduplication is a technique where the server stores only a 

single copy of each file, such that the disk space of cloud 

servers as well as network bandwidth are saved. Trivial 

client side deduplication leads to the leakage of side channel 

information. In order to restrict the leakage of side channel 

information, Halevi et al. [3] introduced the proof of 

ownership protocol which lets a client efficiently prove to a 

server that that the client exactly holds this file. Pietro and 

Sorniotti [19] proposed an efficient proof of ownership 

scheme by choosing the projection of a file onto some 

randomly selected bit-positions as the file proof. 

Line of work for secure deduplication focuses on the 

confidentiality of deduplicated data and considers to make 

deduplication on encrypted data. Ng et al. [20] firstly 

introduced the private data deduplication as a complement  

of public data deduplication protocols of Halevi et al. [3]. 

Convergent encryption [21] is a promising cryptographic 

primitive for ensuring data privacy in deduplication. Bellare 

et al. [22] formalized this primitive as message-locked 

encryption, and explored its application in space-efficient 

secure outsourced storage. Abadi et al. [23] further 

strengthened Bellare et al’s security definitions [22] by 

considering plaintext distributions that may depend on the 

public parameters of the schemas. Regarding the practical 

implementation of convergent encryption for securing 

deduplication, Keelveedhi et al. [4] designed the DupLESS 

system in which clients encrypt under file-based keys 

derived from a key server via an oblivious pseudorandom 

function protocol. 

 
III. ALGORITHMS USED AND COMPUTATION 

Some preliminary notions that will form the foundations of 

our approach. 

A. Convergent Algorithm 

Convergent encryption [22][23][21] provides data 

confidentiality in deduplication. A user (or data owner) 

derives a convergent key from the data content and encrypts 

the data copy with the convergent key. In addition, the user 

derives a tag for the data copy, such that the tag will be used 

to detect duplicates. Here, we assume that the tag  

correctness property [22] holds, i.e., if two data copies are 

the same, then their tags are the same. Formally, a 

convergent encryption scheme can be defined with four 

primitive functions: 

• KeyGen (F): The key generation algorithm takes a file 

content F as input and outputs the convergent key ckF of F. 

• Encrypt (ckF; F): The encryption algorithm takes the 

convergent key ckF and file content F as input and outputs 

the ciphertext ctF. 

• Decrypt (ckF; ctF): The decryption algorithm takes the 

convergent key ckF and ciphertext ctF as input and outputs 

the plain file F. 

• TagGen (F): The tag generation algorithm takes a file 

content F as input and outputs the tag tagF of F. Notice that 

in this paper, we also allow TagGen (·) to generate the 

(same) tag from the corresponding ciphertext as with 

[22][18]. 

 

B. Bilinear Map and Computational Assumption 

 

Definition 1 (Bilinear Map): Let G and GT be two cyclic 

multiplicative groups of large prime order p. A bilinear 

pairing is a map e : G × G → GT with the following 

properties: 

• Bilinear: e(ga1 ; gb2 ) = e(g1; g2)ab for all g1; g2 ∈ R G 

and a; b ∈ R Zp. 

• Non-degenerate: There exists g1; g2 ∈ G such that e(g1; 
g2)  = 1. 
• Computable: There exists efficient algorithm to  compute 

e(g1; g2) for all g1; g2 ∈ R G. 

The examples of such groups can be found in super singular 

elliptic curves or hyper elliptic curves over finite fields, and 

the bilinear pairings can be derived from the Weil or Tate 

pairings. For more details, see [24]. We then describe the 

Computational Diffie-Hellman problem, the hardness of 

which will be the basis of the security of our proposed 

schemes. 

Definition 2 (CDH Problem): The Computational Diffie- 

Hellman problem is that, given g; gx; gy ∈ G1 for unknown 

x; y ∈  Z∗  p, to compute gxy. 

 
IV. SECCLOUD 

In this section, we describe our proposed SecCloud system. 

we begin with giving the architecture of SecCloud as well as 

introducing the design goals for SecCloud. Aiming at 

allowing for auditable and deduplicated storage, we propose 

the SecCloud system. In the SecCloud system, we  have 

three entities: 

• Auditor which helps clients upload and audit their 

outsourced data maintains a Map Reduce cloud and acts like 

a certificate authority. 

• Cloud Servers virtualize the resources according to the 

requirements of clients and expose them as storage pools. 

• Cloud Clients have large data files to be stored and rely on 

the cloud for data maintenance and computation. They can 

be either individual consumers or commercial  

Organizations. 
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Fig. 1. SecCloud Architecture 

 

The SecCloud system supporting file-level deduplication 

includes the following three protocols respectively 

highlighted in Fig. 1. 

File Uploading Protocol: This protocol aims at allowing 

clients to upload files via the auditor. Specifically, the file 

uploading protocol includes three steps: 

• Step 1: (cloud client → cloud server): client performs the 

duplicate check with the cloud server to confirm if such a  

file is stored in cloud storage or not before uploading a file. 

If there is a duplicate, another protocol called Proof of 

Ownership will be run between the client and the cloud 

storage server. Otherwise, the following protocols  

(including step 2 and step 3) are run between these two 

entities. 

• Step 2 (cloud client → auditor): client uploads files to the 

auditor, and receives a receipt from auditor. 

• Step 3 (auditor → cloud server): auditor helps generate a 

set of tags for the uploading file, and send them along with 

this file to cloud server. 

Integrity Auditing Protocol: It is an interactive  protocol 

for integrity verification and allowed to be initialized by any 

entity except the cloud server. In this protocol, the cloud 

server plays the role of prover, while the auditor or client 

works as the verifier. This protocol includes two phases: 

• Step 1 (cloud client/auditor → cloud server): verifier (i.e., 

client or auditor) generates a set of challenges and sends 

them to the prover (i.e., cloud server). 

• Step 2 (cloud server → cloud client/auditor): based on the 

stored files and file tags, prover (i.e., cloud server) tries to 

prove that it exactly owns the target file by sending  the 

proof back to verifier (i.e., cloud client or auditor). 

At the end of this protocol, verifier outputs true if the 

integrity verification is passed. 

 

Proof of Ownership Protocol: It is an interactive protocol 

initialized at the cloud server for verifying that the client 

exactly owns a claimed file. This protocol is typically 

triggered along with file uploading protocol to prevent the 

leakage of side channel information. On the contrast to 

integrity auditing protocol, in POW the cloud server works 

as verifier, while the client plays the role of prover. This 

protocol also includes two steps: 

• Step 1 (cloud server → client): cloud server generates a set 

of challenges and sends them to the client. 

• Step 2 (client → cloud server): the client responds with the 

proof for file ownership, and cloud server finally verifies the 

validity of proof. 

 

Our main objectives are outlined as follows: 

• Cost-Effective: The computational overhead for providing 

integrity auditing and secure deduplication should not 

represent a major additional cost to traditional cloud storage, 

nor should they alter the way either uploading or 

downloading operation. 

• Integrity Auditing: The first design goal of this work is to 

provide the capability of verifying correctness of the 

remotely stored data. The integrity verification further 

requires two features: 1) public verification, which allows 

anyone, not just the clients originally stored the file, to 

perform verification; 2) stateless verification, which is able 

to eliminate the need for state information maintenance at 

the verifier side between the actions of auditing and data 

storage. 

• Secure Deduplication: The second design goal of this 

work is secure deduplication. In other words, it requires that 

the cloud server is able to reduce the storage space by 

keeping only one copy of the same file. Notice that, 

regarding to secure deduplication, our objective is 

distinguished from previous work [3] in that we propose a 

method for allowing both deduplications over files and tags. 

B. SecCloud Details 

In this subsection, we respectively describe the three 

protocols including file uploading protocol, integrity  

auditing protocol and proof of ownership protocol in 

SecCloud. Before our detailed elaboration, we firstly 

introduce the system setup phase of SecCloud, which 

initializes the public and private parameters of the system. 

• System Setup: The auditor working as an authority picks a 

random integer _ ∈ R Zp as well as random elements g; u1; 

u2; : : : ut ∈ R G, where t specifies the maximum number of 
sectors in a file block. The secret key sk is set to be _ and 
kept secret, while the public key pk = (g_; {ui}t i=1) is 
published to other entities. 

File Uploading Protocol: Based on the public and private 

parameters generated in system setup, we then describe the 

file uploading protocol. Suppose the uploading file F has s 

blocks: B1;B2; : : : ;Bs, and each block Bi for i = 1; 2; : : : ; 

s contains t sectors: Bi1;Bi2; : : : ;Bit. Let n be the number 

of slave nodes in the MapReduce cloud. The client runs the 

deduplication test by sending hash value of the file Hash (F) 

to the cloud server. If there is a duplicate, the cloud client 

performs Proof of Ownership protocol with the cloud server 

which will be described later. If it is passed, the user is 

authorized to access this stored file without uploading the 

file. Otherwise (in the second phase), the cloud client 

uploads a file F as well as its identity IDF to the distributed 

file system in MapReduce auditing cloud, and 

simultaneously sends an “upload” request to the master node 

in MapReduce, which randomly picks {_i}ni =1 such that Σn 

i=1 _i = _ and assigns the ith slave node with _i. When each 

slave node (say the ith salve node) receives the    assignment 

_i, it does two steps: 1) Pick up (IDF;F) in the distributed 

file system in MapReduce, and build a Merkle hash tree on 

the blocks {Bj}sj=1 of F. 2) Let hroot denote the hash of the 

root node of Merkle hash tree built on F. This slave node 

uses _i to sign hroot by computing _i = h_iroot. Finally, the 

signature _i is sent to the the slave node which is specified 

by master node for executing the reducing procedure. The 

specified slave node for reducing procedure gathers all the 

signatures {_i} ni =1 from the other slave nodes, and 

computes _ = Πn i=1 _i. The “reduced” signature _ is finally 
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sent back to client as receipt of the storage of file F. In the 

third phase, the MapReduce auditing cloud starts to upload 

the file F to cloud server. To allow public auditing, the 

master node builds file tags of F. Specifically, master node 

firstly writes and arranges all the sectors of F in a matrix  

(we say S), and computes a homographic signature for each 

row of the matrix S (highlighted red in Fig. 3). Notice that 

the tag generation procedure also follows the computing 

paradigm with MapReduce. That is, for the ith (i = 1; 2; : : : 

; s) row of S, the jth (j = 1; 2; : : : ; n) slave node  computes 

_ij = [Hash(IDF||Bi) Πt k=1 uBik k ]_j , where Σn j=1 _j = 

_. Accordingly, all the signatures {_ij} nj =1 are then 

multiplied into the homomorphic signature _i = Πn j=1 _ij at 

a specified reducing slave node. The homomorphic  

signature allows us to in future aggregate the signatures 

signed on the sectors in the same column of S using 

multiplication.  Finally,  the   master   node  uploads  (ID;F; 

{_i}si =1) to cloud server. 

Integrity Auditing Protocol: In the integrity auditing 
protocol, either the MapReduce auditing cloud or the client 

works as the verifier. Thus, without loss of generality, in the 

rest of the description of this protocol, we use verifier to 
identify the client or MapReduce auditing cloud. The 

auditing protocol is designed in a challenge-response model. 

Specifically, the verifier randomly picks a set of block 
identifiers (say IF) of F and asks the cloud server (working 

as prover) to response the blocks corresponding to the 
identifiers in IF. In order to keep randomness in each time  

of challenge, even for the same IF, we introduce a random 

coefficient for each block in challenge. That is, for each 

identifier i ∈ IF, the coefficient ci for the block identified by 

i is computed as ci = f (tm||IDF||i), where f(·) is a 
pseudorandom function and tm is the current time period. 

Finally, C = {(i; ci)}i∈ IF is sent to cloud server for 
challenge. 

Proof of Ownership Protocol: The POW protocol aims at 

allowing secure deduplication at cloud server. Specifically, 

in deduplication, a client claims that he/she has a file F and 

wants to store it at the cloud server, where F is an existing 

files having been stored on the server. The cloud server asks 

for the proof of the ownership of F to prevent client 

unauthorized or malicious access to an unowned file through 

making cheating claim. In SecCloud, the POW protocol is 

similar to [3] and the details are described as follows. 

Suppose the cloud server wants to ask for the ownership 

proof for file F. It randomly picks a set of block identifiers, 

say IF ⊆ {1; 2; s} where s is the number of blocks in F, for 

challenge. Upon receiving the challenge set IF, the client 

first computes a short value and constructs a Merkle tree. 

Note that only sibling-paths of all the leaves with challenged 

identifiers are returned back to the cloud server, who can 

easily verify the correctness by only using the root of the 

Merkle tree. If it is passed, the user is authorized to access 

this stored file. 

 

 
V. SECCLOUD+ 

We specify that our proposed SecCloud system has achieved 

both integrity auditing and file deduplication. However, it 

cannot prevent the cloud servers from knowing the content 

of files having been stored. In other words, the 

functionalities of integrity auditing and secure deduplication 

are only imposed on plain files. In this section, we propose 

SecCloud+, which allows for integrity auditing and 

deduplication on encrypted files. 

 

A. System Architecture 

Compared with SecCloud, our proposed SecCloud+  

involves an additional trusted entity, namely key server, 

which is responsible for assigning clients with secret key 

(according to the file content) for encrypting files. This 

architecture is in line with the recent work [4]. But our work 

is distinguished with the previous work [4] by allowing for 

integrity auditing on encrypted data. SecCloud+ follows the 

same three protocols (i.e., the file uploading protocol, the 

integrity auditing protocol and the proof of ownership 

protocol) as with SecCloud. The only difference is the file 

uploading protocol in SecCloud+ involves an additional 

phase for communication between cloud client and key 

server. That is, the client needs to communicate with the key 

server to get the convergent key for encrypting  the 

uploading file before the phase 2 in SecCloud. Unlike 

SecCloud, another design goals of file confidentiality is 

desired in SecCloud+ as follows. 

• File Confidentiality: The design goal of file 

confidentiality requires to prevent the cloud servers from 

accessing the content of files. Specially, we require that the 

goal of file confidentiality needs to be resistant to 

“dictionary attack”. That is, even the adversaries have pre- 

knowledge of the “dictionary” which includes all the 

possible files, they still cannot recover the target file [4]. 

B. SecCloud+ Details 

We introduce the system setup phase of SecCloud+ as 

follows. 

• System Setup: As with SecCloud, the auditor initializes 
the public key pk = (g_; {ui}t i=1) and private key sk = _, 

where g; u1; u2; : : : ; ut ∈ R G. In addition, to preserve the 
confidentiality of files, initially, the key server picks a 

random key k for further generating file encryption keys,  
and each client is assigned with a secret key ck for 

encapsulating file encryption keys. Based on the initialized 

parameters, we then respectively describe the  three 
protocols involved in SecCloud+. 

File Uploading Protocol: Suppose the uploading file F  has 

s blocks, say B1;B2; : : : ;Bs, and each block Bi for i = 1; 2; 
: : : ; s contains t sectors, say Bi1;Bi2; : : : ;Bit.Client 

computes hF = Hash(F) by itself. In addition, for each sector 

Bij of F where i = 1; 2; : : : ; s and j = 1; 2; : : : ; t, client 

computes    its    hash    hBij    =    Hash(Bij).    Finally  (hF; 

{hBi}i=1;:::;s;j=1;:::;t) is sent to key server for generating 

the convergent keys for F. Upon receiving the hashes, the 

key server computes sskF = f(ks; hF) and sskij = f(ks; hBij ) 

for i = 1; : : : ; s and j = 1; : : : ; t, where ks is the 

convergent key seed kept at the key server, and f(·) is a 

pseudorandom function. It is worthwhile nothing that, 1) We 

take advantage of the idea of convergent encryption 

[21][22][23] to make the deterministic and “content 

identified” encryption, in which each “content” (file or 

sector) is encrypted using the session key derived from  

itself. In this way, different “contents” would result in 

different cipher texts, and deduplication works. 2) 

Convergent encryption suffers from dictionary attack, which 

allows the adversary to recover the whole content with a 

number of guesses. To prevent such attack, as with [4], a 
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“seed” (i.e., convergent key seed) is used for controlling and 

generating all the convergent keys to avoid the fact that 

adversary could guess or derive the convergent key  just 

from the content itself. 3) We generate convergent keys on 

sector-level (i.e., generate convergent keys for each sector in 

file F), to enable integrity auditing. Specifically, since 

convergent encryption is deterministic, it allows to compute 

homomorphic signatures on (convergent) encrypted data as 

with on plain data, and thus the sector-level  integrity 

auditing is preserved. Client then continues to encrypt F 

sector by sector and uploads the ciphertext to auditor. 

Specifically, for each sector Bij of F, i = 1; 2; : : : ; s and j = 

1; 2; : : : ; t, client computes ctBij = Enc(sskBij ;Bij), and 

sends (IDF; {ctBij }i=1;:::;s;j=1;:::;t) to auditor, where 

Enc(·) is the symmetric encryption algorithm. The 

convergent keys sskij are encapsulated by client’s secret key 

ck and directly stored at the cloud servers. 

Integrity Auditing Protocol: The integrity auditing  
protocol works in the same way of that in SecCloud, but 
imposed on encrypted data. Specifically, the verifier (could 
be either the client or the auditor) submits a set of pairs {(i; 

ci)}i∈ IF where IF ⊆ {1; 2; : : : ; s} and ci ∈ R Z. Upon 

receiving {(i; ci)}i∈ IF , the cloud servers then computes !j = 

Σ i∈ IF cictBij for each j = 1; 2; : : : ; t, as well as the 

aggregated homomorphic signature _ = Π i∈IF _ci i . In 
addition, the cloud server constructs a Merkle hash tree on 
encrypted blocks ctBi of F and attempts to prove 

retrievability at block-level. Precisely, for each i ∈ IF, the 
cloud server computes a pair (Hash(ctBi );Ωi), where ctBi = 
[ctBi1 ; : : : ; ctBit ] and Ωi includes the necessary auxiliary 
information  for  reconstructing  the  root  node  using  {ctBi 

}i∈IF . Finally (_; {!j}t j=1; {(Hash(ctBi );Ωi)}i∈IF ) is sent 

to verifier for auditing. 
 

VI. SECURITY ANALYSIS 

In this section, we attempt to analyze the security of our 

proposed both schemes. Before this, we firstly formalize the 

security definitions our schemes aim at capturing. 

A. Security Definitions 

Based on the paradigm of SecCloud and SecCloud+, we 

define the security definitions, adapting to the integrity 

auditing and secure deduplication goals. Our  both 

definitions capture the philosophy of game-based definition. 

Specifically, we define two games respectively for integrity 

auditing and secure deduplication, and both of the games are 

played by two players, namely adversary and challenger.  

The adversary (the role of which is worked by semi-honest 

cloud server and cloud client respectively in integrity 

auditing and secure deduplication definition) is trying to 

achieve the goal condition explicitly specified in the game. 

Having this intuition, we give our security definitions as 

follows. 

1) Integrity Auditing: An integrity auditing protocol is 

sound if any cheating cloud server that convinces the  

verifier that it is storing a file F is actually storing this file. 

To capture this spirit, we define its game based on Proof of 

Retrievability (PoR). The security model called Proof of 

Retrievability (PoR) was introduced by Shacham and 

Waters’ in [12]. This security model captures the 

requirement for integrity auditing, whose basic security goal 

is to achieve proof of retrievability. In more details, in this 

security model, if there exists an adversary who can forge 

and generate any valid integrity proofs for any file F with a 

non-negligible probability, another simulator can be 

constructed who is able to extract F with overwhelming 

probability. The formal definition for the above model can 

be given by the following game between a challenger and an 

adversary A. Note that in the following security game, the 

challenger plays the role of auditing server while the 

adversary A acts as the storage server. 

• Setup Phase: The challenger runs the setup algorithm with 

required security parameter and other public parameter as 

input. Then, it generates the public and secret key pair (pk; 

sk). The public key pk is forwarded to the adversary A. 

• Query phase: The adversary is allowed to query the file 

upload oracle for any file F. Then, the file with the correct 

tags are generated and uploaded to the cloud storage server. 

These tags can be publicly verified with respect to the public 

key pk. 

• Challenge Phase: A can adaptively send file F to the file 

tag tag comes, C runs the integrity verification protocol 

Integrity Verify {A C (pk; tag)} with A. 

• Forgery: A outputs a file tag tag′ and the description of a 

prover Pt. 

Secure Deduplication: Similarly, we can also define a 

game between challenger and adversary for secure 

deduplication below. Notice that the game for secure 

deduplication captures the intuition of allowing the 

malicious client to claim it has a challenge file F through 

colluding with all the other clients not owning this file. 

• Setup Phase: A challenge file F with fixed length and 

minimum entropy (specified in system parameter) is 

randomly picked and given to the challenger. The challenger 

continues to run a summary algorithm and generate a 

summary sumF. 

• Learning Phase: Adversary F can setup arbitrarily many 

client accomplices not exactly having F and have them to 

interact with the cloud servers to try to prove the ownership 

of file F. Notice that in the learning phase, the cloud server 

plays as the honest verifier with input sum sumF and the 

accomplices could follow any arbitrary protocol set by A. 

• Challenge Phase: The exact proof of ownership protocol 

is executed. Specifically, the challenger outputs a challenge 

to A and A responses with a proof based on its learnt 

knowledge. If A’s proof is accepted by the cloud server, we 

say A succeeds. 

 

VII. PERFORMANCE ANALYSIS 

In this section, we will provide a thorough experimental 

evaluation of our proposed schemes. We build our test bed 

by using 64-bit t2.Micro Linux servers in Amazon EC2 

platform as the auditing server and storage server. In order  

to achieve _ = 80 bit security, the prime order p of the 

bilinear group G and GT are respectively chosen as 160 and 

512 bits in length. We also set the block size as 4 KB and 

each block includes 25 sectors. It is clear the time cost of 

slave node is growing with the size of file. This is because 

the more blocks in file, the more homomorphic signatures 

are needed to be computed by slave node for file uploading. 

We also need to notice that there does not exist much 

computational load difference between common slave nodes 

and the reducer. Compared with the common slave nodes, 

reducer only additionally involves in a number of 

multiplications,   which   is   lightweight   operation.   It     is 
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worthwhile noting that, the procedure of tag generation (the 

phase 2 and 3 in file uploading protocol) could be handled in 

pre-processing, and it is not necessary for client to wait until 

uploading file. Before examine the time cost of file auditing, 

we need to firstly make analysis and identify the number of 

challenging blocks (i.e., |IF|) in our integrity auditing 

protocol. According to [5], if _ fraction of the file is 

corrupted, through asking the proof of a constant m blocks  

of this file, the verifier can detect the misbehaviour with 

probability _ = 1 − (1 − _) m. To capture the spirit of 

probabilistic auditing, we set the probability confidence _ = 

70%; 85% and 99%, and draw the relationships between _ 

and m in Fig. 6. It demonstrates that if we want to achieve 

low (i.e., 70%), medium (i.e., 85%) and high (i.e., 99%) 

confidence of detecting any small fraction of corruption, we 

have to respectively ask for 130; 190 and 460 blocks for 

challenge. 

 

VIII. CONCLUSION 

Aiming at achieving both data integrity and deduplication in 

cloud, we propose SecCloud and SecCloud+. SecCloud 

introduces an auditing entity with maintenance of a 

MapReduce cloud, which helps clients generate data tags 

before uploading as well as audit the integrity of data having 

been stored in cloud. In addition, SecCoud enables secure 

deduplication through introducing a Proof of Ownership 

protocol and preventing the leakage of side channel 

information in data deduplication. Compared with previous 

work, the computation by user in SecCloud is greatly 

reduced during the file uploading and auditing phases. 

SecCloud+ is an advanced construction motivated by the  

fact that customers always want to encrypt their data before 

uploading, and allows for integrity auditing and secure 

deduplication directly on encrypted data. 
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