Certain investigations on filter performance for skin texture analysis

Dr.Punal M Arabi, Gayatri Joshi, Kavya P Parameswaran, Abhik Raj Subedi

Department of Biomedical Engineering, ACSCE, Bangalore-74

arabi.punal@gmail.com, gayitrijoshi@gmail.com, meet.kavya007@gmail.com, abhikbook@gmail.com

ABSTRACT: Noises are always present in an image posing higher or lower complexity in removal and however it is necessary to remove those noises to obtain a better image. There are various types of filters available that help us to remove those noises; only when a right type of filter is used the best result could be obtained. This paper compares the performance of filters namely median, Weiner, average and sharpened filter applied for skin texture analysis by using GLCM(Gray level co-occurrence matrix) parameters. Cheek and dorsal skin images at two different angles are taken by a 8MegaPixel camera, with a resolution of 1920x2560, exposure time $1/10^{\text{th}}$ of a second as samples for analysis.

Keywords - Skin texture analysis, GLCM, Filters

I. INTRODUCTION

Various skin texture patterns appear on the surface of human skin. For instance, a person's palm shows different textures of blood spots, prints and wrinkles. The analysis and synthesis of these texture patterns is important for several research areas, such as computer graphics, medical imaging, and cosmetics development. In signal processing, a filter is a device or process which removes the unwanted component or feature from the signal. Filtering is a class of signal processing. Most often, this means removing some frequencies and not others in order to suppress interfering signals and reduce background noise.

II. LITERATURE SURVEY

ShijieHao.etal[1] constructed a spatially guided map which exploits the spatial influence of the image details based on edge response of an image. Further, this map was integrated into two state of the art image filters for image detail enhancement. We know noise removal is important task in different applications such as medical which the noise free images could lead to less error detection. Azadeh Noori Hoshyar.etal [2]compared the performance of five filters - Median Filter, Adaptive Median Filter, Mean Filter, Gaussian Filter and Adaptive Wiener filter- for de-noising from Gaussian noise, Salt & Pepper noise. Poisson noise and Speckle noise.MotonoriDoi etal[3] Proposed image analysis and synthesis of skin color texture by wavelet transform. The skin color texture is modeled as four texture components of base color, internal skin texture, regular surface texture and local texture. The skin color image is decomposed to the four texture components by multi-resolution analysis using wavelet transform. Sergey Abramov etal[4].

proposed Prediction of Filtering Efficiency for DCTbased Image Denoising. It is possible to estimate the MSE values of images to be processed by means of calculation rather simple statistics of DCT coefficients. Moreover, the quasi-optimal value of threshold parameter for DCT filtering methods can be easy evaluated as well. The results are presented for different additive Gaussian noise levels and a set of gray-scale test images. Ji-Hong Liu etal[5] proposed Research and Implementation for Texture of Handback Skin Quantitative Analysis based on Co-occurrence Matrix. First of all, the non-invasive method of digital imaging Technology is adopted to get the handback skin morphological data. Then, based on the algorithms of gray level co-occurrence matrix and displacement co-occurrence Matrix, morphological features of the individual hand back skins are measured. Finally, we analyses the relationship between the experimental results and skin aging for both methods.Kouhei Shimizu.etal[6] proposed a new computer-aided method for the skin lesion classification applicable to both melanocytic skin lesions (MSLs) and nonmelanocytic skin lesions (NoMSLs). They developed a new method to distinguish among melanomas, nevi, BCCs, and SKs. They calculated 828 candidate features grouped into three categories: color, sub region, and texture. They introduced two types of classification models:a layered EmreCelebi.etal[7],proposed the automatdquantification o f clinically significant colors in dermoscopy images.

Given a true-color dermoscopyimage with N colors, we first reduce the number of colors in this image to a small number K, i.e., K <; N, using the K-means clustering algorithm incorporating a spatial term. The optimal K value for theimage is estimated separately using five commonly used cluster validity criteria.Mariam A.Sheha.etal[8], presented an

automated method for melanoma diagnosis applied on a set of dermoscopy images. Features extracted are based on gray level Co-occurrence matrix (GLCM) and Using Multilayer perceptron classifier (MLP) to classify between Melanocytic Nevi and Malignant melanoma. MLP classifier was proposed with two different techniques in training and testing process.

In this work tells about the novel method of identifying the filter performance of different filters on skin texture analysis.

III. METHODOLOGY

Fig1:Flow diagram

Cheek and dorsal skin images at two different angles are taken by a 8MegaPixel camera, with a resolution of 1920x2560, exposure time $1/10^{th}$ of a second as samples for analysis. The images are converted to gray. The region of interest (ROI)is then selected. The ROI must have at least 600 to 800 pixels to get reliable results. Different filters like Median filter, Wiener filter, Average filter, Sharpened filter are applied to ROI of these images and the GLCM values are then calculated. The calculated GLCM values of the filtered images by different filters have been compared to analyze the performance of them.

GLCM matrix has been found using the formulae using below:

Contrast = $\sum_{(i,j)} |i - j| 2 p(i,j)$**ă**(1) Where p=image, i,j=coordinates, p(i,j)=Intensity value at i,j, Correlation = $\sum_{i,j} \frac{(i-\mu i)(j-\mu j)p(i,j)}{\sigma i - \sigma j}$**ă**(2) Energy = $\sum_{i,j} p(i,j) 2$(3) Homogeneity = $\sum_{i,j} \frac{p(i,j)}{1+(i-j)}$(4) Medianfilter:

$$y(m,n) = median\{x[i,j],(i,j) \in \mathbf{\check{a}}\}$$
.....(5)

where w represents a neighborhood defined by the user, centered around location [m,n] in the image

Wiener filter:
(n/2)-1 (n/2)-1
f<sub>ij=
$$\sum_{K=-n/2} \sum_{l=-n/2} (v_{kl}g_{+k},j+l) + e_{ij......}$$
(6)</sub>

for I,j=1,2,3,4....n.

where v denotes the weights by which g is blurred and e denotes the noise

Average filter: $y[i] =_{\mathcal{M}} \sum_{j=0}^{M-1} x[i+j]$(7) where x[] is the input signal, y[] is the output signal and M is the number of points in the average

Where $x_{i,j}$ is the original pixel value at the co-ordinate I, j, Făisătheăhighăpassăfilter, ă ăisătheătuningăparameteră

IV. RESULTS

Fig2:Cheek and dorsal skin images in two different angles

Table1: The GLCM values of Different filters

	S. No	Position	Parameters	Filters			
				Media n filter	Wiener filter	Average filter	Sharpe ned filter
	1	Hand (angle1)	Contrast	0.1377	0.1846	0.1687	5.6582
			Correlation	0.9445	0.7743	0.7827	0.0955
			Energy	0.1885	0.3405	0.3616	0.0260
			Homogenei ty	0.9315	0.9110	0.9189	0.4755
	2	Cheek (angle1)	Contrast	0.1176	0.1931	0.1562	6.2551
			Correlation	0.7803	0.7743	0.8230	0.0860
			Energy	0.3095	0.3119	0.3206	0.0231
			Homogenei ty	0.9121	0.9074	0.9244	0.4532
	3	Hand (angle2)	Contrast	0.1193	0.1488	0.1280	3.5709
			Correlation	0.9478	0.9432	0.9435	0.3979
			Energy	0.2016	0.1852	0.2015	0.0282
			Homogenei ty	0.9407	0.9262	0.9380	0.5248
	4	Cheek (angle2)	Contrast	0.1302	0.2143	0.1476	8.3461
			Correlation	0.7625	0.6488	0.7666	0.0452
			Energy	0.4564	0.3500	0,4169	0.0192
			Homogenei ty	0.9532	0.9025	0.9296	0.4238

Fig3: Cheek skin images by different filters

Fig4:dorsal skin images using different filters

 ypei inge
 institutétét inge
 seda füringe
 asop fiel nege

 issel für inge
 issel für inge
 issel für inge
 issel für inge

 issel für inge
 issel für inge
 issel für inge
 issel für inge

 issel für inge
 issel für inge
 issel für inge
 issel für inge

 issel für inge
 issel für inge
 issel für inge
 issel für inge

 issel für inge
 issel für inge
 issel für inge
 issel für inge

 issel für inge
 issel für inge
 issel für inge
 issel für inge

 issel für inge
 issel für inge
 issel für inge
 issel für inge

Figure 2 shows the cheek and dorsal hand skin images and figure 3 shows the filtered cheek images taken two different angles. Figure 4 shows the filtered hand images taken at two different angles. Table1 shows the GLCM(gray level Co-occurrence matrix) values of the cheek and hand skin images using different filters.

V. DISCUSSION

The cheek and hand samples are taken for experimentation and imaged at two different angles. A region of interest is identified in each sample and various filters are used to filter this region of interest. GLCM parameters are found for these filtered images.

The results which has been tabulated in Table-1 shows the GLCM(gray level Co-occurrence matrix)values for Median, wiener, Average and sharpened filters. The GLCM values of median, wiener and average filters are not of any particular pattern but only the GLCM values of sharpened filter is of particular pattern for the skin samples taken ; i.e., for median filter the contrast value for hand and cheek at angle1 is decreasing and for angle2 it is increasing. Whereas the correlation for hand and cheek at angle1and angle2 is been decreasing. The energy for hand and cheek at angle1 is and angle2 is increasing. The homogeneity for hand and cheek at angle1 is decreasing, whereas at angle2 it is increasing. It is found that the results of median filter do not yield any particular pattern by comparing all the GLCM values at different angles. For wiener filter, the contrast for hand and cheek at both angle1 and at angle2 is increasing. The correlation for hand and cheek at anlgle1 is found to be the same where as at angle2 it is decreasing; the energy for hand and cheek at angle1 is decreasing and at angle2 is increasing. The homogeneity for hand and cheek at angle1and angle2 is found to be decreasing. Also wiener filter, average filter do not give any particular pattern but only sharpened filter shows a definite pattern; i.e., the contrast for hand and cheek at angle1 and angle2 is increasing. The correlation

International Journal of Advanced Networking & Applications (IJANA)

for hand and cheek at angle1 and angle2 is decreasing. The energy for hand and cheek at angle1 and angle 2 is found decreasing. The homogeneity for hand and cheek at angle1 and at angle 2 is increasing. From the tabulated GLCM results it is found that, of all the filters considered here only sharpened filters results fall in a pattern for analyzing skin texture.

VI. CONCLUSION

The proposed method is tested on the cheek and dorsal skin images taken at two different angles. The results obtained show that the sharpened filter performs better compared to the other filters namely Median, wiener and average filters to classify the skin textures based on GLCM values. It is found that the contrast of Hand skin is lesser than that of cheek skin where as correlation, Energy and homogeneity of Hand skin are more than that of cheek skin.

However more samples of skin from different locations are to be tested to know about the accuracy of the proposed method.

ACKNOWLEDGMENT

The authors thank the Management and Principal of ACS College of engineering, Mysore road, Bangalore for permitting and supporting us to carrying out this research work.

REFERENCES

[1].ShijieHao,DaruPan,YanrongGuo,RichagHong, MengWangă "lă Imageă detailă enhancementă withă spatiallyă guidedă filtersl.ă Signală Processing120(2016)789–796.

Elsevier journal.

[2]. Azadeh Noori Hoshyar, Adel Al-Jumailya, Afsaneh NooriăHoshyarb, lăComparingătheăPerformanceăofăVariousă

Filters on Skin Cancer **Imagesl,ăInternationalăConferenceă** on Robot PRIDE 2013-2014 - Medical and Rehabilitation Robotics and Instrumentation, ConfPRIDE 2013-2014,

Procedia Computer Science 42 (2014) 32 – 37 [3]. **DamanpreetăKaur,ăPrabhneetăSandhu,**∥ Human Skin Texture Analysis using Image

ProcessingăTechniques, International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064,

[4]. Sergey Abramov, Sergey Krivenko,

AlexeyăRoenko,ăVladimirăLukin, lăPredictionăofăFilteringă Efficiency for DCT-basedă Imageă Denoising I,ă 2nd Mediterranean Conference on Embedded Computing, MECD - 2013

[5]. Jaruwan Toontham, Wirat Rattanapitak and Somkait Udomhunsakul, Comparativeă Efficiencyă ofă Waveletă Filters for Multi-focusă Coloră Imageă Fusion I,ă 2ndă International Conforence on Education Technology and Computer (ICETC), 2010.

[6]. Ji-HongăLiu,ăQianăGaoăandăYangăLiu, Research and

Implementation for Texture of Handback Skin Quantitative Analysis based on Co-**occurrenceă Matrix**, International Conference on Industrial Mechatronics and Automation, 2009.

[7].Rashiăgoelăandăsaranjeetăsingh, Skinăcancerădetectionă usingă glcmă matrixă analysisă andă svmă classifier I,

international journal of applied engineering and technology issn: 2277-212x (online) an open access, online international journal available at http://www.cibtech.org/jet.htm vol. 5 (1) january-march 2015, pp.6-11

[8].Mariam A.Sheha,Mai S.Mabrouk,Amr Sharawy, Automatică Detectionă ofă Melanomaă Skină Canceră usingă Textureă Analysis I,ă Internatională Journală ofă Computer Applications (0975 – 8887), Volume 42– No.20, March 2011