
International Journal of Advanced Networking & Applications (IJANA)

ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

121

Secured Load Re-Deployment of File Chunks in

Distributed File System
Roopadevi D S, Mrs. Nandini G B.E,M.Tech(Ph.D)

PG Student, Assistant Professor ,Department of Computer Science,

RajaRajeswari College of Engineering, Bangalore-74

roopadevids@gmail.com, Email: nanduamma@gmail.com

ABSTRACT-In cloud computing environment, the Distributed File Systems are the most important building blocks.

The DFS is used to store nodes and they perform many functions of computing applications. Files can be created,

deleted and appended dynamically. It results in load imbalance in a distributed file system, that is, file chunks are not

distributed as uniformly as possible among the nodes. The distributed file system in production system powerfully

depend on the central node for chunk re allocation. This dependency is clearly inadequate in a large scale; failure-prone

environment because the load balancer in the center is put under significant workload that is linearly scaled with the

system size and because of that, it becomes the performance bottleneck and the single point failure. A fully distributed

file load balancing algorithm is proposed to handle the load imbalance problem. Load is transferred from heavily

loaded node to physically closed lightly loaded node. Encryption is done for the raw file before dividing it into chunks

and later it will be decrypted.

Keywords - Distributed File System, Name node, Data Node, Cloud Computing, Map Reduce.

1. INTRODUCTION

Distributed file system is mainly based on the client-server

architecture, where the client obtains the data stored on

the server as if it is locally present on their own system.

The distributed file system is mainly developed for

extensive data storage and data access.

The main characteristic is that the file contents can be

stored in various nodes which shares and transfer the data.

There are various types of distributed file system, one

among them is the HDFS (Hadoop Distributed File

System).

HDFS is very similar to the Google File System. HDFS

is built using java language. HDFS is designed to store

and process large data sets. It is designed in such a way

that it can run on the computer hardware which is

affordable and easy to obtain. HDFS takes care of storing

files of huge volume of data. HDFS component is used by

the administrator. The main features of the HDFS are:

 It is fault tolerant and can be developed on the low

cost commodity hardware.

 It provides high throughput admission to

application data.

 Quick and automatic recovery from the faults.

HDFS applications are based on the notion of ―write

one read many‖. HDFS architecture is like master-slave

architecture. The HDFS consists of two main components

namely, A single name node and the multiple instances of

data node. The name node is also called as master server

or admin node. Remaining all other nodes are called data

nodes. These Data nodes are also called as slave node or

worker node. The name node and data nodes are

software‘s designed to run on the low cost hardware

machines.

A file is split or divided into a number of small pieces

called chunks. These chunks of files are assigned to the

different data nodes. The data nodes create or delete the

file chunks in accordance with the instruction of the

central node or main server.

The functionalities of the name node are:

 It manages the metadata information of the file

system.

 It controls the access to files by client.

 It allows mapping of data blocks to data nodes.

 It performs operation like opening, closing and

renaming of files.

 It provides the list of HDFS files that belong to

each data block, the current location of the block

and the state of the file.

The functionalities of data node are:

 Information contained in the files is stored in the

data nodes, that is, the file contents are stored in

the data nodes.

 Data nodes serve the read and write requests from

the clients.

 It performs creation, deletion and replication of the

blocks based on the instructions from the name

node.

In, HDFS, the file is divided or split into number of

small pieces called chunks. These chunks are assigned to

different data nodes. The load possessed by the nodes is

proportional to the number of file chunks the data node

holds. A HDFS cluster is said to be in a balanced state if

there are no overloaded or under loaded based on the

percentage of the DFS space used by the data nodes.

A data node is said to be overloaded data node if the

DFS space used by the data node is greater than the

predefined threshold. A data node is said to be under

loaded if the DFS space used by the data node is lesser

than the predefined threshold. The threshold can be

mailto:roopadevids@gmail.com
mailto:nanduamma@gmail.com

International Journal of Advanced Networking & Applications (IJANA)

ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

122

configured by the user that is, the threshold can be

changed by the user.

The imbalanced state is created in the HDFS as and

when the new data nodes joins the system. Whenever the

file is created and also when the file chunks possessed by

the data nodes exceed the threshold capacity or when the

file chunks possessed by the data nodes are below the

threshold capacity. The distributed file system depends on

a central node for chunk redistribution. This dependency

puts the central node under the considerable workload and

becomes the performance bottleneck that causes the entire

process to slow down or stop and single point of failure.

The objective is to allocate the chunks of the files as

equally as possible among the storage nodes such that no

nodes manage an excessive number of chunks and also

movement cost is reduced. To achieve the objective, a

load redistribution algorithm is used to solve the load

imbalance problem among all the chunk servers that is the

data nodes in the HDFS. Data nodes performs the load

rebalancing task spontaneously without name node due to

this the performance of the utilization of the system is

improved.

2. LITERATURE SURVEY

Paper 1: Hsueh-Yi Chung, Che-Wei Chanz Hung-Chang

and Hsiao Yu-Chang Cho [1] proposed the Load

Rebalancing Problem in Distributed File Systems where

the Distributed File Systems are principal and the crucial

building blocks for cloud computing applications. In such

a file systems, nodes concurrently assist storage and

computing functions. A file is divided into a number of

small pieces called as file chunks and are assigned in

evident nodes so that venture can be performed in

analogous over the nodes. In a cloud computing

environment, failure is normal and nodes maybe

enhanced, restored and added in the system. Files can also

be dynamically deleted, created and added. The outcome

of this is load imbalance state, that is, the file chunks are

not distributed as evenly as possible among the nodes.

Despite of distributed load balancing algorithm exist in

the literature to deal with the load imbalance problem.

Upcoming distributed file system in production as systems

completely depend on the central node for chunk re

assignment. This dependence is clearly insufficient in a

large scale failure and vulnerable environment because the

central load balancer is placed under considerable

workload, that is, it grows linearly with the system size

and thus becomes the staging bottleneck and the single

point of failure.

A file is divided into a number of small pieces called as

file chunks and are assigned in evident nodes so that

venture can be performed in analogous over the nodes. In

a cloud computing environment, failure is normal and

nodes maybe enhanced, restored and added in the system.

Files can also be dynamically deleted, created and added.

The outcome of this is load imbalance state, that is, the

file chunks are not distributed as evenly as possible among

the nodes. Despite of distributed load balancing algorithm

exist in the literature to deal with the load imbalance

problem. Upcoming distributed file system in production

as systems completely depend on the central node for

chunk re assignment. This dependence is clearly

insufficient in a large scale failure and vulnerable

environment because the central load balancer is placed

under considerable workload, that is, it grows linearly

with the system size and thus becomes the staging

bottleneck and the single point of failure.

Paper 2: Prasanna Ganesan, Mayank Bawa and Hector

Garcia [2] proposed Online Balancing of Range-

Partitioned Data with Applications to Peer-to-Peer

Systems where the range partitioning is used to solve the

problem of horizontally partitioning a dynamic relation

over a large number of disks of nodes. Such a kind of

segregation is usually advisable in large scale parallel

databases, as well as in peer-to-peer systems. As and when

the tuples are deleted and inserted, the segregation may

need to be modified and data migrated in order to achieve

storage balance across the participant disks or nodes.

Efficient asymptotically optimal algorithms that confirm

storage balance at all times are used, even against a

characterized deletion and insertion of tuples. The above

algorithm is consolidated with distributed routing

structure to architect a peer-to-peer system that supports

efficient range queries, while concurrently assuring storing

balance.

Paper 3: H.-C. Hsiao, H.Liao and S.-S. Chen [3]

proposed Load Balance with imperfect Information in

Structured Peer-to-Peer System with the conviction of

virtual server, peers involved in a heterogeneous,

structured peer-to-peer network may host different

numbers of virtual servers, peers can balance their loads

corresponding to their loads corresponding to their

capacities. The already present decentralized load balance

algorithms designed for the heterogeneous, structured

peer-to-peer networks either construct additional networks

to exploit global information or demand peer-to-peer

nodes to be organized in a hierarchical fashion. Without

depending on any backup networks and independent of

the geometry of the peer-to-peer substrates. Based on the

partial knowledge of the system, A novel load balancing

algorithm that is distinct estimates the probability of

distribution of the capacities of peers and loads of virtual

servers, causing in imperfect system condition, peers can

determine their anticipated loads and reassign their loads

in parallel. The comparison is done through notable

simulations; it is differentiated with prior load balancing

algorithm.

Paper 4: Wenqiu Zeng, Ying Li and Jian Wu [4]

proposed load rebalancing in Large-Scale distributed File

System with the advancement of data on the internet has

shown the massive growth. Some researchers have paid

their attention to find an effective way to keep and govern

these data. A load rebalancing algorithm to solve the load

balancing problem all compute nodes in distributed file

International Journal of Advanced Networking & Applications (IJANA)

ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

123

system is used. It also guarantees that one block of file

and its two replicates are stored in three different chunk

servers simultaneously at the same time. This algorithm

fulfills the load balancing while guarantying the reliability

of the system.

Paper 5: Qingqing Zhong [5] proposed a load-balancing

approach for DHT-based P2P Networks the nitpicking

issue in the efficient operation of peer-to-peer network is

load balancing. There are various number of suggestions

exist for load balancing for structured peer-to-peer

network. The adaptive load balancing for structured peer-

to-peer system is used. The technique aims to balance the

request and routing load of the peer under unfairly request

of workloads. These procedures outstandingly improve the

distribution of the load and provide inevitably better

scalability. With more workloads the false positives rate is

reasonably low through experiment results.

3. PROPOSED SYSTEM

In this paper, in the proposed system a load rebalancing

algorithm is used to tackle the load imbalance problem.

This algorithm is made to run in the rebalancing server

which makes the rebalancing decision. It is invoked with

the command as and when the imbalance state is created

in the system. This rebalancing algorithm makes each and

every data node present in the HDFS to communicate with

each other and estimate the load of the neighboring data

nodes. Based on the estimated load the data nodes are

classified as overloaded data node and under loaded data

node. These data nodes are sorted based on the number of

file chunks each data nodes possesses. The data nodes are

sorted from least lightly loaded node to heavily loaded

node. The least lightly loaded node migrates the chunk of

file it possess to the next lightly node to transfer the file

chunks which is lesser than or equal to the threshold. This

process repeats unless and until all the data nodes in the

system becomes normal loaded. The Raw data file is

encrypted before dividing the file into chunks and it will

be decrypted again later.

 Benefits of Proposed System

 The chunks are assigned as equally as possible

among the data nodes.

 The movement cost is reduced.

 It solves the performance bottleneck problem and

a single point of failure as it no longer depends

on the central nodes for chunk reallocation.

 The data nodes balance their loads spontaneously

by eliminating the dependency on the central

node.

 The performance of the system is improved.

 The resource availability is improved and resource

utilization also increases.

In the Proposed system four different module are

implemented. They are as follows,

oChunk Distribution

oIdentifying Nodes

oLoad Rebalancing Algorithm

oSecurity

 Load Rebalancing Algorithm Module

In the rebalancing algorithm, every chink storage node

initially estimates whether or not it is lightly loaded or

heavily loaded node. A node is lightweight if the amount

of chunks it hosts is smaller than the predefined threshold.

Every node contacts variety of other nodes within the

system and builds a vector denoted by V. this vector

consists of entries and every entry contains the IDs of the

nodes. This light weighted node selects one of the heavy

weighted node for the reallocation of the chunks that

heavy weighted node possesses.

Chunk creation

Begin

Select a file to split

For the selected file

Split the file into chunks

For end

Store the file chunks into the servers

End

Chunk Servers Module

Begin

Interact with each server to gather information regarding

light and heavy load, including locations of chunks.

If under loaded then send request to migrate the

chunks

Repeat till no progress

End

 Stepwise Implementation of Rebalancing

Algorithm:

1. To Estimate and find the lightly loaded node in the set

of sample data nodes

Step 1: Get the live data nodes report from name node.

Step 2: Calculate the average utilization of DFS space

used.

Step 3: Sort the data nodes according to the DFS space

used in ascending order.

Step 4: Choose the least lightly loaded node as source

node i in sample data nodes.

Step 5: Choose the heavily loaded node as destination

node j in sample data nodes.

2. To migrate file chunks across the data nodes

Step 6: i moves the file chunks it possesses to i+1.

Step 7: i requests j to migrate the chunks it possesses

below or equal to the threshold.

Step 8: i becomes j‘s successor that is ij+1.

Step 9: j removes the file chunks assigned to i.

Step 10: Estimate the load of the sample data nodes.

Step 11: If imbalanced goto step-3 repeat the process

unless and until all the sample nodes are balanced.

International Journal of Advanced Networking & Applications (IJANA)

ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

124

Step 12:update the chunk location information to name

node.

Fig 1. An example illustrating our algorithm where (a) the

initial loads of chunk servers N1,N2,N3,…..N10, (b) N1

samples the load of N1,N3,N6,N7 andN9 in order to

perform the load rebalancing algorithm, (c) N1 leaves and

sheds its loads to its successor N2 and then rejoins as

N9‘ssuccessor

We have to make sure that the data that has to be stored in

the cloud has to be secured. In order to provide the

security, the raw data is encrypted. In this proposed

system, an algorithm is used to encrypt the data. Later this

encrypted file is divided into chunks and stored in various

nodes.

Fig. 2. Before: Imbalanced loads on Data Nodes

Fig. 3. After- Balanced loads on DataNodes

CONCLUSION

This paper focuses the load rebalancing algorithm that

solves the load imbalance problem in distributed file

system. It also tries to balance the loads of nodes and

minimizes the migration cost by taking the information of

the node locality. It solves the performance bottleneck

problem by self modifying the loads of the nodes without

depending on the central node to balance the load. It also

improves the outcome of the system meanwhile improves

the resource availability and resource utilization.

The algorithm plays vital role in the performance of the

system. The algorithm attempts to balance the loads of the

file chunks as much as feasible, since the data nodes

spontaneously does the rebalancing task without the

interference of the name node. It not only accomplishes

the load balancing but it also makes sure that the system is

reliable.

ACKNOWLEDGEMENT

I am very much thankful to Dr. Balakrishna, Principal,

RajaRajeshwari college of Engineering, Bangalore for

giving this prestigious opportunity of being a member of

this institution.

International Journal of Advanced Networking & Applications (IJANA)

ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

125

I am very proud and thankful to Dr. Usha S, HOD,

Department of Computer Science of Engineering for her

valuable advice and ideas at various stages of this work.

I render my whole hearted thanks to my project guide

Mrs. Nandini G Assistant Professor, Department of

Computer Science and Engineering, who has been guiding

staff to achieve the goal.

REFERENCES

[1]. Hsueh-Yi Chung Che-Wei Chanz Hung-Chang Hsiao

Yu-Chang Chao, ―The Load Rebalancing Problem in

Distributes File System‖, 2013.

[2]. Prasanna Ganesan, Mayank Bawa and Hector Garcia-

Molina, ― Online Balancing of Range-Partitioned Data

with Applications to Peer-to-Peer Systems‖, 2012. [3].

H.-C. Hsiao,H. Liao, s.-s Chen , ―Load Balance with

Imperfect Information in Structured Peer-to-Peer

Systems‖, April. 2011.

[4]. Wenqiu Zeng, Ying Li, Jian Wu, ―Load rebalancing

in Large-Scale Distributed File System‖ , 2009.

[5]. Qingqing Zhong, ― A Load-Balancing Approach for

DHT-Based P2P Networks‖, 2009.

[6]. G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall and W. Vogels, ―Dynamo: Amazon’s Highly

Available Key-Value Store‖, Oct.2007.

[7]. Wang Yue, Cai Wangdong, Duan Qi, ―An Adaptive

Dynamic Load Balancing Algorithm‖, 2006.

[8]. Yingwu Zhu and Yiming Hu,‖ Efficient Proximity-

Aware Load Balancing for DHT-Based P2P System‖ ,

April 2005.

[9]. D. KArger and M. Ruhl, ― Simple Efficient Load

Balancing Algorithms for Peer-to-Peer Systems,‖ June

2004.

[10]. J.dean and S.Ghemawat,‖ MapReduce: Simplified

Data Processing on Large Clusters‖, Proc.Sixth

Symp.Operating System Design and

Implementation(OSDI ‘04),pp.137-150,Dec 2004.

[11]. P.Jamuna and R. Anand Kumar ―Optimized Cloud

Computing Technique to Simplify Load Balancing‖

International Jornal of Advanced Research in Computer

Science and Software Engineering, Volume 3, Issue 11,

November 2013.

