
ISSN: 0975-0282

International Journal of Advanced Networking & Applications (IJANA)

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

82

Automating Infrastructure as a Code using Continuous

Integration and Continuous Delivery
Bhanupriya H, Dr. Krishna A N, Ravi Shekhar Jha

PG student
1
, Professor

2
, DevOps Specialist

3
,

Department of Computer Science, SJBIT, under VTU, Bangalore-60

bhanupriya15393@gmail.com, csehod@sjbit.edu.in, ravisjha@hpe.com

ABSTRACT-Every project team expects their project management to be automated and robust. With advancements in

automation technologies, one can think of automating the manual built infrastructures like storage servers, project

servers and deployments on those servers. We can achieve this automation of Infrastructure and build a continuous

delivery pipeline which accelerates the speed of project development, testing and deployment using Emerging

technologies. This paper depicts how team can leverage the Continuous Integration and Continuous Delivery concepts

to develop their projects to increase the efficiency and speed up their releases.

Keywords - Configuration management, Continuous Delivery, Continuous Integration, GitHub, Jenkins

The day of a software release tends to be a tense one.
1. Introduction

SOFTWARE RELEASE IN ORGANIZATIONS TO USERS IS OFTEN

PAINFUL, RISKY AND TIME CONSUMING. CONTINUOUS

INTEGRATION AND CONTINUOUS DELIVERY (CI/CD) CAN HELP

BIG ORGANIZATIONS BECOME AS SLENDER, AGILE AND

INNOVATIVE AS STARTUPS. THROUGH TRUSTWORTHY, LOW RISK

RELEASES CI/CD MAKES IT POSSIBLE TO CONTINUOUSLY ADAPT

SOFTWARE ALIGNED WITH USER FEEDBACK, MARKET SHIFTS

AND CHANGES IN BUSINESS STRATEGY [1].TEST, SUPPORT,

DEVELOPMENT AND OPERATIONS WORK TOGETHER AS ONE

DELIVERY TEAM TO AUTOMATE AND SIMPLIFY THE BUILD, TEST

AND RELEASE PROCESS. CONTINUOUS INTEGRATION IS OUTLINED

AS FUNDAMENTAL PRACTICE IN EXTREME PROGRAMMING

METHODOLOGY, IT HAS EMERGED AS AN ESSENTIAL ELEMENT

FOR TEAMS DOING ITERATIVE AND INCREMENTAL SOFTWARE

DELIVERY.CONTINUOUS DELIVERY IS EXTENSION OF

CONTINUOUS INTEGRATION, WHICH ENSURES THE TEAM THAT

EVERY CHANGE THEY MAKE TO THE SYSTEM WILL BE

RELEASABLE, AND THAT WE CAN RELEASE ANY VERSION AT

JUST PUSH OF A BUTTON.

2. PROBLEM STATEMENT

Having a bad development workflow will be costly; it

degrades the productivity of engineers in development to

deployment cycles. A great workflow can make any good

developer to be great and best ones to be exceptional.

The most important problem that we face as software

professionals is: If somebody thinks of a best idea, how do

we deliver it to users as quickly as possible.

There are many software development methodologies

which primarily focus on requirement management and its

effect on the development effort. It is challenging to find

what happens once requirements are identified, solutions

formulated, developed and tested, how these activities

joined together and synchronized to make process as

efficient and reliable as team can make it? How do we

able developers, testers, and build and operation

engineers to work together effectively?

The process used to make the release of projects increases

the degree of risk and terrifying sometimes. In many

software projects, release is a manually intensive process;

finally the application is started, piece by piece if it‘s a

distributed or service oriented application. If any step is

not perfectly executed, the application won‘t run properly.

It is very difficult to identify what went wrong and where

the error is.

 Disadvantages of manual deployment:

The creation of extensive, detailed documentation that

describes the steps to be taken and the ways in which the

steps may go wrong during deployments. Confidence on

manual testing to confirm that the application is running

correctly. Repeated calls to the development team to

explain why a deployment is going wrong on a release

day. Frequent rectifications to the release process during

the course of a release. Releases that take more than a few

minutes to achieve. Releases that are unpredictable in their

result to be rolled back.

 Need for Automated testing & deployment

When deployments aren‘t fully automated, errors will

occur every time they are executed. The question of

interest is whether or not the errors are noteworthy. Even

with excellent deployment tests, bugs can be hard to track

down.

Automated deployments encourage cooperation,

because everything is explicit in a script. Documentation

has to make assumptions about the level of knowledge of

the reader and in reality is usually written as a reference

for the person performing the deployment, making it solid

to others.

 Risk in deploying to production like environment

Releasing into staging is the first time that operations team

interact with the new release. In some organizations,

mailto:bhanupriya15393@gmail.com
mailto:csehod@sjbit.edu.in
mailto:ravisjha@hpe.com

ISSN: 0975-0282

International Journal of Advanced Networking & Applications (IJANA)

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

83

separate operations teams are used to deploy the software

into staging and production. In this case, the first time an

operations person sees the software is the day it is released

into production. Either a production-like environment is

costly enough that access to it is strictly controlled.

The development team assembles the correct installers,

configuration files, database migrations, and deployment

documentation to pass to the people who perform the

actual deployment—all of it untested in an environment

that looks like production or staging.

When the deployment to staging occurs, a team is

assembled to accomplish it. Sometimes this team has all

the necessary skills, but often in very large organizations

the responsibilities for deployment are divided between

several groups and it results in poor collaboration. It

should also be possible to use the same automated process

to roll back to a previous version of production if the

deployment goes wrong.

3. PROPOSED METHOD

The Software release should be a low-risk, frequent,

cheap, rapid, and predictable process. Our goal is to

describe the use of deployment pipelines, combined with

high levels of automation of both testing and deployment

and comprehensive configuration management to deliver

push-button software releases.

 Every Change Should Trigger the Feedback Process

An operational software application can be usefully

decomposed into four components: executable code,

configuration, host environment, and data [2]. If any of

them changes, it can lead to a change in the behavior of

the application. Therefore we need to keep all four of

these components under control and ensure that a change

in any one of them is tested.

Executable code changes when a change is made to the

source code. Every time a change is made to the source

code, the resulting binary must be built and tested. In

order to gain control over this process, building and

testing the binary should be automated. Continuous

integration is the practice of building and testing your

application on every check-in.

This executable code should be the same operational

code that is deployed into every environment, whether it is

a testing environment or a production environment.

Anything that changes between environments should be

noted as configuration information. Any change to an

application‘s configuration, in whichever environment,

should be tested.

The tests will vary depending on the system, but they

will usually include at least the following checks. The

process of creating the executable code must work. This

verifies that the syntax of your source code is valid. The

software‘s unit tests must pass. This checks that your

application‘s code behaves as expected. The software

should fulfill certain quality criteria such as test coverage

and other technology-specific metrics.

The software‘s functional acceptance tests must pass.

This checks that your application conforms to its business

acceptance criteria—that it delivers the business value that

was intended. The software‘s nonfunctional tests must

pass. This checks that the application performs sufficiently

well in terms of capacity, availability, and security, and so

on to meet its users‘ needs.

The software must go through empirical testing and a

demonstration to the customer and a selection of users.

This is typically done from a manual testing environment.

In this part of the process, the product owner might decide

that there are missing features, or we might find bugs that

require fixing and automated tests that need creating to

prevent regressions.

 Open to feedbacks in early stages

The key to fast feedback is automation. With fully

automated processes, your only limitation is the amount of

hardware that you are able to throw at the problem. If you

have manual processes, you are dependent on folks to get

the job done. People take longer, they introduce errors,

and they are not auditable. Moreover, performing manual

build, test, and deployment processes is boring and

repetitive—far from the best use of people. Developers

should commit changes to their version control system

frequently, and fragmented code into separate components

as a way of managing large or distributed teams.

 The Delivery Team must be reactive to Feedback

It is essential that everybody involved in the process of

delivering software is involved in the feedback process.

That includes developers, testers, operations staff,

database administrators, infrastructure specialists, and

managers.

A process based on continuous improvement is

essential to the rapid delivery of eminent software.

Iterative processes help establish a regular heartbeat for

this kind of activity—at least once per iteration a

retrospective meeting is held where everybody discusses

how to improve the delivery process for the next iteration.

Finally, feedback is not noble unless it is acted upon.

This requires discipline and planning. When something

needs doing, it is the responsibility of the whole team to

stop what they are doing and decide on a course of action.

Only once this is done should the team carry on with their

work.

 Scaling of the process

ISSN: 0975-0282

International Journal of Advanced Networking & Applications (IJANA)

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

84

One common complaint we hear is that the process we

describe is idealistic. It may work in small teams, these

critics say, but it can‘t possibly work in any huge,

distributed project. Both the theory and the practice are as

relevant to large teams as they are too small, and our

experience has been that they work.

4. METHODOLOGY

Create a Repeatable, Reliable Process for Releasing

Software

Releasing software should be easy. It should be easy

because you have tested every single part of the release

process hundreds of times already. It should be as modest

as pressing a button. The repeatability and reliability

derive from two principles: automate almost everything,

and keep everything you need to build, deploy, test, and

release your application in version control.

Deploying software eventually involves three things: 1)

Provisioning and managing the environment in which your

application will run (hardware configuration, software,

infrastructure, and external services). 2) Installing the

correct version of your application into it. 3) Configuring

your application, including any data or state it requires.

The deployment of your application can be realized

using a fully automated process from version control.

Application configuration can also be a fully automated

process, with the necessary scripts and state kept in

version control or databases. Clearly, hardware cannot be

kept in version control; but, particularly with the advent of

cheap virtualization technology and tools like chef,

ansible, the provisioning process can also be fully

automated [3].

 Automate Almost Everything

There are some things it is impossible to automate.

Exploratory testing depend on experienced testers. In

general, your build process should be automated up to the

point where it needs specific human direction or decision

making. This is also true of your deployment process and,

in fact, our entire software release procedure.

Automation is a prerequisite for the deployment

pipeline, because it is only through automation that we can

guarantee that people will get what they need at the push

of a button. However, you don‘t need to automate

everything at once. You should start by looking at that

part of your build, deploy, test, and release process that is

currently the tailback. You can, and should, automate

gradually over time.

 Keep Everything in Version Control

Everything you need to build, deploy, test, and release

your application should be kept in some form of versioned

storage. All of the necessary stuff should be version-

controlled, and the relevant version should be identifiable

for any given build. That is, these change sets should have

a single identifier, such as a build number or a version

control change set number that references every piece.

It should be possible for a new team member to sit

down at a new workstation, check out the project‘s

revision control repository, and run a single command to

build and deploy the application to any accessible

environment, including the local development

workstation. It should also be possible to see which build

of your various applications is deployed into each of your

environments, and which versions in version control these

builds came from.

 If it’s risky test it more rather than at later stage

This is the most general principle on our list, and could

perhaps best be described as a heuristic. Integration is

often a very painful process. If this is true on your project,

integrate every time somebody checks in, and do it from

the start of the project.

If releasing software is painful, aim to release it every

time somebody checks in a change that passes all the

automated tests. If you can‘t release it to real users upon

every change, release it to a production-like environment

upon every check-in. If creating application

documentation is painful, do it as you develop new

features instead of leaving it to the end. Extreme

programming is essentially the result of applying this

heuristic to the software development process. Much of

the advice in this book comes from our experience of

applying the same principle to the process of releasing

software [4].

 Build Quality In

The earlier you catch defects, the cheaper they are to fix.

Defects are fixed most cheaply if they are never checked

in to version control in the first place. Firstly, testing is not

a phase, and certainly not one to begin after the

development phase. If testing is left to the end, it will be

too late. There will be no time to fix the defects. Secondly,

testing is also not the domain, purely or even principally,

of testers. Everybody on the delivery team is responsible

for the quality of the application all the time.

 Done Means Released

For some agile delivery teams, ―done‖ means released into

production. This is the ideal situation for a software

development project. However, it is not always practical

to use this as a measure of done. The initial release of a

software system can take a while before it is in a state

where real external users are getting benefit from it. So we

will choose the next best option and say that a

functionality is ―done‖ once it has been successfully

showcased, that is, demonstrated to, and tried by,

ISSN: 0975-0282

International Journal of Advanced Networking & Applications (IJANA)

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

85

representatives of the user community, from a production-

like environment.

Start by getting everybody involved in the delivery

process together from the start of a new project, and

ensure that they have an opportunity to communicate on a

recurrent regular basis. Once the barriers are down, this

communication should occur continuously, but you may

need to move towards that goal incrementally. This is one

of the central principles of the DevOps movement [7].

 Continuous Improvement

It is worth highlighting that the first release of an

application is just the first stage in its life. All applications

evolve, and more releases will follow. It is important that

your delivery process also evolves with it.

The whole team should regularly gather together and

hold a retrospective on the delivery process. Somebody

should be nominated to own each idea and ensure that it is

acted upon. Then, the next time that the team gathers, they

should report back on what happened. This is known as

the Deming cycle: plan, do, study, and act [8].

5. TOOLS USED

This section demonstrates how we can build Continuous

Integration and Continuous Delivery pipeline and thus

find the solution to the problem explained in 2nd section

above. We need Version control systems (Source code

Management), Build automation server (Jenkins),

Configuration management tool (chef), Selenium (testing

scripts), Servers for deployment at different environments

(Development, Staging, Production) and any project code

that has to be deployed residing in SCM (Source Code

Management). We will design CI/CD (Continuous

Integration and Continuous Delivery) pipeline after going

through each of these selected tools.

 Distributed Version control systems

The rise of distributed version control systems (DVCSs) is

transforming the way teams cooperate. Where open source

projects once emailed patches or posted them on forums,

tools like Git make it extremely easy to pull patches back

and forth between developers and teams and to branch and

merge work streams. DVCSs allow you to work easily

offline, commit changes locally, and rebase or defer them

before pushing them to other users.

The core characteristics of a DVCS is that every

repository contains the entire history of the project.

GitHub has an additional layer of indirection: Changes to

your local working copy must be checked in to your local

repository before they can be pushed to other repositories,

and updates from other repositories must be resolved with

your local repository before you can update your working

copy.

In the traditional model, committers acted as

gatekeepers to the definitive repository for a project,

accepting or rejecting patches from contributors. Due to

the various above advantages we choose GitHub as

version control system for building CI/CD pipeline.

 Build automation server- Jenkins

Jenkins has a large pool of plugins allowing it to integrate

with pretty much every tool in the build and deployment

ecosystem. Once CI (Continuous Integration) tool jenkins

is installed, it should be possible to get started in just a

few minutes by telling your tool where to find your source

control repository, what script to run in order to compile,

if necessary, and run the automated commit tests for your

application, and how to tell you if the last set of changes

broke the software. It is general purpose job executer.

 Configuration management tool-Chef

There are a number of solutions for managing operating

system configuration, including which software and

updates are installed, on an ongoing basis. Perhaps the

most popular are ansible, Puppet, and Chef. We have used

Chef as the tool for building CI/CD pipeline in this paper,

it is a powerful automation platform that transforms

complex infrastructure into code, bringing your servers

and services to life[3].

Chef is built around simple concepts: achieving desired

state, centralized modeling of IT infrastructure, and

resource primitives that serve as building blocks. These

very same concepts allow Chef to handle the most difficult

infrastructure challenges on the planet. Anything that can

run the chef-client can be managed by Chef. Chef recipes

are the programs written in ruby used to achieve the

desired configuration. Need to bootstrap the nodes/servers

which has to be configured only the first time to establish

connection between client and chef server. Figure1 shows

the client server architecture of chef topology.

Figure 1: Chef Topology

 Selenium scripts for testing

ISSN: 0975-0282

International Journal of Advanced Networking & Applications (IJANA)

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

86

Selenium is a set of different software tools each with a

different approach for supporting test automation. Most

Selenium QA Engineers focus on the one or two tools that

most meet the needs of their project, however learning all

the tools will give you many different options for

approaching different test automation problems.

 Deployment servers

These are the servers used to deploy the code in different

environments like Development where developers see

how changes look like, Staging where testing can be done

and Production where users are allowed to access once the

application is released [12].

6. PROCESS

We can setup CI/CD pipeline using the above tools. For

using Chef we need chef Development kit to program the

necessary configurations. Chef Server has to be setup on

Red Hat or any OS. It requires bootstrapping of

nodes/servers (here its deployment servers) for the first

time to establish connection between the server and those

deployment servers which acts as client to the chef

server. Configuration includes installation of necessary

packages, setting environment variables to facilitate

running of the application. Recipes are the program

consisting of configurations necessary for deploying. It is

uploaded as cookbooks, data bags, roles etc. on Chef

Server which is later made to execute on Clients

bootstrapped. These are applied to clients (servers) when

we run the command ―chef-client‖ on those servers. Thus

Chef used for deployment on servers.

In Jenkins, jobs can be configured such a way that it

pulls the application code that has to be deployed from

the GitHub when a change is made to it and run the chef

command ―chef-client‖ on the server on which it has to

be deployed i.e. development server. Job can also be

configured/created such a way that deployment to staging

can happen every night and tested every night each

changes made and results are sent to the developers as a

feedback in the form of an email. By this, we can

configure multiple jobs to perform deployments on

servers on different environment, testing of those

applications and set to run on conditional basis.

Whenever the developer checks in the code to GitHub

it creates a pull request and send a message to Jenkins to

deploy code on development server so that developer can

see the effect of changes he made to the application

codebase. Build happens on development and notifies

developer if deployment was successful on completion of

executing ―chef-client‖ on that server.

Every night the changes made to the application to be

deployed in GitHub is deployed automatically to the

staging server and selenium scripts are made to run on

that staging environment to perform testing of the

application. Results are sent via email to the developers

as a feedback to rectify mistakes/errors if any. This is

called Nightly build.

Once the development team feels the application is

ready to release without any errors, code from GitHub

can be deployed to production server where end users

can access it. By this way, releases are made easy, less

time consuming and robust. This can boost efficiency of

development team and the business strategy.

Figure 2 shows the Deployment workflow cycle,

Figure 3 shows the overview of how the pipeline can be

setup. Figure 4 shows the feedback mechanism in CI/CD.

Figure 4 shows the GitHub overview of how application

code that has to be deployed looks like. Figure 6 is

snapshot of chef server where we can manage cookbooks

that is run on servers. Figure 7 shows the Jenkins setup

that is necessary to setup automatic jobs to deploy

automatically whenever necessary.

Figure 2: Workflow of Deployment Cycle

Figure 3: Continuous Integration and Continuous

Delivery pipeline

ISSN: 0975-0282

International Journal of Advanced Networking & Applications (IJANA)

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

87

Figure 4: Feedback mechanism in

CI/CD

Figure 5: Application code to be deployed in GitHub

Figure 6: chef server

Figure 7: Jenkins job list and configurations

CONCLUSION

Management is vital to the success of every project. Good

management creates processes enabling efficient delivery

of software, while ensuring that risks are managed

appropriately and regulatory regimes are complied with.

Finally, it is demonstrated that iterative delivery,

combined with an automated process for building,

deploying, testing, and releasing software exemplified in

the deployment pipeline, is not only compatible with the

goals of conformance and performance, but is the most

effective way of achieving these goals. This process

enables greater collaboration between those involved in

delivering software, provides fast feedback so that bugs

and unnecessary or poorly implemented features can be

discovered quickly, and paves the route to reducing that

vital metric, cycle time. This, in turn, means faster

delivery of valuable, high-quality software, which leads to

higher profitability with lower risk. Thus the goals of good

governance are achieved.

ACKNOWLEDGEMENTS

I extend my sincere thanks to TSS R&D, Hewlett Packard

Enterprise, Bangalore for giving me this opportunity to

carry out this project. I am Grateful to Senior Software

Engineering manager Mr. Aravind Desai and my mentor

Mr. Ravi Shekhar Jha and other colleagues for supporting

me to work on this project. I am also thankful to Head of

Department Computer science, Dr. Krishna A N, SJBIT

for his sincere support.

REFERENCES

[1] David Farley; Jez Humble ―Continuous Delivery:

Reliable Software Releases through Build, Test, and

Deployment Automation, ―Published by Addison-Wesley

Professional, 2010.

[2] Beck, Kent, and Cynthia Andres, "Extreme

Programming Explained: Embrace Change (2nd edition)",

Addison-Wesley, 2004.

[3] Mischa Taylor, Seth Vargo "Learning Chef"

Publisher: O'Reilly Media, Inc. Release Date: November

2014.

[4] George Spafford, Kevin Behr, Gene Kim, ―The

Phoenix Project" Publisher: IT Revolution Press, Release

Date: January 2013.

[5] Donald Simpson, "Extending Jenkins" Publisher:

Packt Publishing, Release Date: December 2015.

[6] Ben Straub, Chris Dawson, "Building Tools with

GitHub", Publisher: O'Reilly Media, Inc. Published:

February 2016.

[7] Adzic, Gojko, ―Bridging the Communication Gap:

Specification by Example and Agile Acceptance Testing‖,

Neuri, 2009.

[8] Cohn, Mike, ―Succeeding with Agile: Software

Development Using Scrum‖, Addison-Wesley, 2009.

[9] Beck, Kent, and Cynthia Andres, ―Extreme

Programming Explained: Embrace Change (2nd edition)‖,

Addison-Wesley, 2004.

[10] Duvall, Paul, Steve Matyas, and Andrew Glover,

"Continuous Integration: Improving Software Quality and

Reducing Risk", Addison-Wesley, 2007.

ISSN: 0975-0282

International Journal of Advanced Networking & Applications (IJANA)

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE

88

[11] ThoughtWorks, Inc., ―The Thought Works

Anthology: Essays on Software Technology and

Innovation‖, The Pragmatic Programmers, 2008.

[12] Clark, Mike, ―Pragmatic Project Automation: How to

Build, Deploy, and Monitor Java Applications‖, The

Pragmatic Programmers, 2004.

BIOGRAPHIES OF AUTHORS

Bhanupriya H, is currently studying 4
th

sem M.Tech

(CSE) in SJBIT, Obtained Bachelor‘s degree under VTU.

Presently working as an Intern, Hewlett Packard

Enterprise, Bangalore as part of DevOps team. Has a

publication in National Conference. Interested in Research

in Automations.

Dr. Krishna A N is currently Professor & Head,

Department of Computer Science and Engineering, SJB

Institute of Technology, Bengaluru. He obtained his

Bachelors and Master‘s degree in Computer Science and

Engineering from University Visvesvaraya College of

Engineering, Bangalore University, Bangalore and PhD

degree from Visvesvaraya Technological University,

Belagavi, Karnataka, India. He has publications in

international conferences and journals. His research

interests include image processing, pattern recognition and

content-based image retrieval.

Ravi Shekhar Jha obtained Master's Degree in

Computers and Technology from Mysore University, has

work experience of 8.5 years. Presently working as

DevOps Specialist, TSS R&D, Hewlett Packard

Enterprise, Bangalore. He has worked extensively in

different automation technologies and has a passion for

automating processes as much as possible at every stage

of software development lifecycle.

