
International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE
473

I

A SURVEY OF VARIOUS TECHNOLOGIES FOR SOA

ADOPTED BY SOFTWARE INDUSTRIES
Karthik .V, Prof. R.Jaya

P.G. Scholar, Sr. Assistant Professor, Department of Computer Science and Engineering,

New Horizon College of Engineering, Bangalore, Karnataka, India

karthik.v114@gmail.com, jayamanojkumar@gmail.com

ABSTRACT-This paper presents the knowledge about technologies in Service- Oriented Architecture (SOA) and Web

services. To integrate the various applications of a large enterprise, we need various standards to remove the heterogeneity

problems. The various standards and its responsibilities are depicted in this paper. The standards for discussion are SOAP,

WSDL, UDDI, XML, and JAVA. Finally, we depict the technologies and development challenges and directions in the field

of SOA and Web services.

Keywords - Service integration, SOAP, UDDI, WSDL, XML.

1. INTRODUCTION TO SOA AND WEB

SERVICES

n an SOA, applications are made up of loosely coupled

software services, which interact to provide all the

functionality needed by the application. Each service is

generally designed to be self-contained and stateless to

simplify the communication that takes place between them.

There are three major roles involved in an SOA:[1]

 : Service provider

The service provider creates a service and can publish its

interface and access information to a service broker.

A service provider must decide which services to expose and

how to expose them. Often, a trade-off exists between

security and interoperability; the service provider must make

technology decisions based on this trade-off. If the service

provider uses a service broker, decisions must be made

about how to categorize the service, and the service must be

registered with the service broker using agreed-upon

protocols.[1].

 : Service broker

The service broker, also known as the service registry, is

responsible for making the service interface and

implementation access information that is available to any

potential service requester.

The service broker provides mechanisms for registering

and finding services. A particular broker might be public

(for example, available on the Internet) or private, only

available to a limited audience (for example, on an intranet).

The type and format of the information stored by a broker

and the access mechanisms used is implementation-

dependent.[1].

 : Service requester

The service requester, also known as a service client,

discovers services and then uses them as part of its

operation.

A service requester uses services provided by service

providers. Using an agreed-upon protocol, the requester can

find the required information about services using a broker

(or this information can be obtained in another way). After

the service requester has the necessary details of the service,

it can bind or connect to the service and invoke operations

on it. The binding is usually static, but the possibility of

dynamically discovering the service details from a service

broker and configuring the client accordingly makes

dynamic binding possible.[1]

To summarize, a complete web service is, therefore, any

service that:

 Is available over the Internet or private (intranet)

networks

 Uses a standardized XML messaging system

 Is not tied to any one operating system or

programming language

 Is self-describing via a common XML grammar

 Is discoverable via a simple find mechanism.[3].

2. BENEFITS OF WEB SERVICES
 : Exposing the Existing Function on the Network

A web service is a unit of managed code that can be

remotely invoked using HTTP. That is, it can be activated

using HTTP requests. Web services allow you to expose the

functionality of your existing code over the network. Once it

is exposed on the network, other applications can use the

functionality of your program.[3].

 : Interoperability

Web services allow various applications to talk to each other

and share data and services among themselves. Other

applications can also use the web services. For example, a

VB or .NET application can talk to Java web services and

vice versa. Web services are used to make the application

platform and technology independent.[3].

 : Standardized Protocol

Web services use standardized industry standard protocol for

the communication. All the four layers (Service Transport,

XML Messaging, Service Description, and Service

Discovery layers) use well-defined protocols in the web

services protocol stack. This standardization of protocol

stack gives the business many advantages such as a wide

range of choices, reduction in the cost due to competition,

and increase in the quality.[3].

 : Low Cost Communication

Web services use SOAP over HTTP protocol, so you can

use your existing low-cost internet for implementing web

mailto:karthik.v114@gmail.com
mailto:jayamanojkumar@gmail.com

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE
474

services. This solution is much less costly compared to

proprietary solutions like EDI/B2B. Besides SOAP over

HTTP, web services can also be implemented on other

reliable transport mechanisms like FTP.[3].

3. TECHNOLOGIES

Over the past two years, three primary technologies have

emerged as worldwide standards that make up the core of

today's web services technology. These technologies are:[2].

: Simple Object Access Protocol (SOAP)

SOAP provides a standard packaging structure for

transporting XML documents over a variety of standard

Internet technologies, including SMTP, HTTP, and FTP. It

also defines encoding and binding standards for encoding

non-XML RPC invocations in XML for transport. SOAP

provides a simple structure for doing RPC: document

exchange. By having a standard transport mechanism,

heterogeneous clients and servers can suddenly become

interoperable. .NET clients can invoke EJBs exposed

through SOAP, and Java clients can invoke .NET

Components exposed through SOAP. [2].

 : Web Service Description Language (WSDL)

WSDL is an XML technology that describes the interface of

a web service in a standardized way. WSDL standardizes

how a web service represents the input and output

parameters of an invocation externally, the function's

structure, the nature of the invocation (in only, in/out, etc.),

and the service's protocol binding. WSDL allows disparate

clients to automatically understand how to interact with a

web service. [2].

: Universal Description, Discovery, and Integration

(UDDI)

UDDI provides a worldwide registry of web services for

advertisement, discovery, and integration purposes. Business

analysts and technologists use UDDI to discover available

web services by searching for names, identifiers, categories,

or the specifications implemented by the web service. UDDI

provides a structure for representing businesses, business

relationships, web services, specification metadata, and web

service access points. [2].

4. The Role of WSDL, SOAP, and Java/XML

Mapping in SOA
 : The Role of WSDL in SOA

WSDL is the interface definition language (IDL) that defines

the interactions among SOA components. It provides a

standard language for describing how to communicate with

a component. Without a standard IDL, you must resort to ad

hoc documentation to communicate the interfaces for your

SOA components.[4].

Figure 4.1 shows the role of WSDL for SOA

Integration as described in this book. The figure provides a

UML object diagram depicting the relationship of WSDL in

an SOA Integration setting. First, notice the Web Services

Platform subsystem where deployment takes place. The top-

level class depicted in that subsystem is Service

Deployment. Each instance of Service Deployment

corresponds to a Web service that is deployed on this

platform. Next, notice that Service Deployment contains

both an operation (taken from the WSDL interface

description) and a Java method. In this manner, you see that

a Web service deployment defines a relationship between a

WSDL interface description and a Java implementation of

that description. More specifically, a Web service

deployment defines relationships between individual

operations in a WSDL and the Java methods that implement

them in that particular deployment.[4].

Figure 4.1 shows that a WSDL interface description

contains a types instance (i.e., the wsdl:types element). As

you know, this is the top-level element within the

wsdl:definitions element that describes the XML Schema

types used in the WSDL. Here, you can also see that this

particular WSDL‘s types instance contains the schema

Orders.xsd that is part of the XML Schema Library in an

Enterprise System. It also incorporates the schema

Faults.xsd from the Web Services Infrastructure

subsystem.[4].

The Enterprise System in Figure 4.1 could be the OMS

described in which case, its schema library would include

the Orders.xsd schema described there. Other

―infrastructure‖ libraries—like standard schema for fault

messages—are also envisioned as part of the SOA

framework deployed by an enterprise.

So, as described here, one role of WSDL in the SOA

framework is to assemble standard XML types into

operations that describe Web services. Another role is as a

participant in a Web service‘s deployment.[4].

The preceding section discusses how SOA requires an

interface definition language (i.e., WSDL) to describe, in a

standard way, how to invoke a Web service component. The

WSDL describes an abstract interface (i.e., wsdl:portType

and wsdl:operation), and a concrete binding of that interface

(i.e., wsdl:binding). As shown in Example 4–2, a WSDL

operation is described in terms of abstract messages (i.e.,

wsdl:message elements). SOAP provides a concrete

implementation, or binding for the wsdl:message elements,

thereby defining the XML structure of the messages

exchanged among SOA components in a standard manner. In

this paper, SOAP means SOAP Version 1.1 unless a specific

reference is made to SOAP Version 1.2. [4].

Figure 4.1: The role of WSDL in SOA integration.

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE
475

 : The Role of SOAP in SOA

REST proponents also argue that REST is simpler than

SOAP because it does not concern itself with the semantics

of SOAP nodes. Along with its envelope structure, SOAP

includes a processing model composed of SOAP nodes that

transmit and receive SOAP messages, and may relay them to

other SOAP nodes. SOAP even goes so far as to prescribe

header attributes such as env:mustUnderstand that are used

to indicate whether processing of a SOAP header block is

mandatory or optional. Complexity creeps in this way

because if the ultimate receiver node of a SOAP message

cannot process a header block that is marked as

env:mustUnderstand, it must reply with a SOAP fault. And

the SOAP specification describes a standard envelope

structure for SOAP faults. [4].

SOAP node semantics and the associated header

processing attributes give the REST advocates most of their

ammunition for declaring that SOAP is too complicated. I

must admit that I have some sympathy for this point of view.

However, at this point, the lack of a standard IDL for REST

makes it impossible to work with as a standard for enterprise

SOA. [4].

 : The Role of Java/XML Mapping in SOA

Java/XML mapping for SOA is accomplished by defining

and implementing type mappings. A type mapping is simply

a relationship between a Java class and an XML Schema

type—for example, corp:AddressType and samples.Address.

A type mapping is implemented by a serializer and a

deserializer. The serializer converts instances of the Java

class into XML instances that conform to the schema. The

deserializer does the reverse. [4].

When doing ―Start from WSDL and Java‖ development, a

large portion of the design process involves defining the type

mappings and serializers. For example, suppose you have a

Java method such as:

public void updateAddress(String custId, Address addr)

And suppose the corporate standard schema for address is

a complex type: corp:AddressType. Then, the WSDL that is

deployed to describe the Web service for updateAddress

needs to include corp:AddressType as a message part. But

furthermore, the serialization subsystem on the platform

where the Web service is deployed must be able to access

the deserializer for the type mapping . When a SOAP

request for the Web service arrives, the deserializer is used

to convert the SOAP part to the Java method parameter. This

process is illustrated in Figure 4.2. [4].

As discussed in Section 4.3, the dispatching of this SOAP

message is based on the wrapper element—

custinfo:updateAddress. It gets mapped to the

updateAddress method as shown. Below this wrapper

element are the two message parts8 —custinfo:custId and

custinfo:address. These are mapped to the parameters custId

(String) and addr (Address), respectively. This mapping, of

the message parts to the method parameters, is not defined in

the WSDL. The WSDL contains no information about the

underlying Java implementation of the Web service. This

property of the WSDL is consistent with the separation of

concerns concept discussed in Section 4.2. After all, the

consumer of the Web service shouldn‘t have to be concerned

with such implementation details. All the consumer needs is

the information necessary to construct the SOAP message

and send it to the appropriate URL. [4].

So, the type mappings that link the SOAP/WSDL to the

Java implementation are not defined in the WSDL, but

rather are part of the internal—platform-specific—

deployment information associated with the Web service. In

the JWS model, these type mappings are defined by the

JAXB standard mapping as customized by any annotations.

Figure 4.2: SOAP parts map to Java method

parameters.

At this point, we just want to point out that the type mapping

process is outside the scope of the WSDL and is a platform-

specific issue. Furthermore, you should understand that

being able to implement flexible type mappings is a key to

the ―Start from WSDL and Java‖ development model

needed for SOA. As illustrated in Figure 4.2, the key to

being able to deploy the updateAddress() method as a Web

service with the desired WSDL is to be able to implement

the type mapping . [4].

CONCLUSION
In this paper we tried to bridge the technologies of web

Services and SOA. Critical Web services infrastructures will

be covered, such as WSDL, SOAP, UDDI, Discovery,

Composition, Registry, and Web services invocation and

relationship binding. How Web and SOA can benefit with

each other will also be explored and also about the Role of

WSDL, SOAP, and Java/XML Mapping in SOA. Finally,

the presenter will depict technologies and development

challenges and directions in the field of SOA and Web

services. [5].

REFERENCE

[1].http://www.redbooks.ibm.com/redpapers/pdfs/redp4884.

pdf

[2].http://gsl.mit.edu/media/programs/south-africa-summer-

2015/materials/o'reilly_-_java_web_services.pdf

[3].http://www.tutorialspoint.com/webservices/webservices_

tutorial.pdf

[4]. Mark D. Hansen, SOA Using Java Web Services,

Prentice Hall,2007.

[5].http://www.intersystems.com/assets/SOA_WP-

be1cf67974f8d09552742ccdbba0792d.pdf

http://www.redbooks.ibm.com/redpapers/pdfs/redp4884
http://gsl.mit.edu/media/programs/south-africa-summer-
http://www.tutorialspoint.com/webservices/webservices_
http://www.intersystems.com/assets/SOA_WP-

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE
476

Karthik.V studying M-Tech (Computer Network

Engineering) in New Horizon college of Engineering,

marathalli. He completed BE (Information Science

Engineering) degree in VTU University in East Point college

of Engineering and Technology. His area of interest includes

Data Mining, SOA, and Computer Networks.

R.JAYA is working as a Sr.Assistant Professor in the

department of CSE at New Horizon college of Engg.She has

13 years of teaching experience. She has done bachelor and

master degree in engineering under Anna University. She is

doing Ph.D under VTU. Her research interest includes data

mining, expert systems,SOA and security.

