
International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 461

A Selective Approach for Storing Small Files in

Respective Blocks of Hadoop
Chethan.R , ChandanKumar, Jayanth Kumar.S Girish.H.J , Prof. Mangala.C.N

UG Scholar, Associate Professor

Department of Computer Science and Engineering

chethanr95@gmail.com, kchandan488@gmail.com,sjayanth317@gmail.com,girishgowdahj@gmail.com

mangalacn.02@gmail.com

Abstract – Hadoop is an open source framework used for processing the data in big data. This hadoop majorly consists of two

components 1. HDFS(Hadoop Distributed File System) 2. Map Reduce Component. HDFS is used for storing the files in hadoop and Map

Reduce is used to process the data stored in HDFS. Hadoop doesn‘t performs well for storing the small files that is, it provides individual

block of DataNode to individual file and hence reduces the performance. This research work gives an introduction of HDFS and the

existing ways for solving the problem of small files. In this proposed approach, we merge the small files of into same block using Map

Reduce programming model on Hadoop and hence provide different key value for files of different format. Hence this approach reduces

the inefficient usage of memory from NameNode to access the DataNode and in turn it improves the efficiency of Hadoop by storing

selective small files in respective blocks of Hadoop.We also propose a Traffic analyser with MapReduce paradigm that provides batch

analysis in minimum response time and helps to process the log files in efficient and stable way

Keywords - Hadoop; NameNode; MapReduce; Small Files; Traffic Analyzer.

MapReduce component is used to process the data stored in
I. INTRODUCTION

It is a known fact that Hadoop has been specially created to

manage Big Data. We know that Google is the world known

popular search engine. To provide search results for users,

Google had to store huge amount of data. Hence in

1990‘s,they started searching for the different ways of

storing these huge amount of data and finally in the year

2003 they came up with Google File System(GFS) to store

these huge amount of data and in 2004 they provided

another technique called MapReduce for processing the data

present in GFS.

But these techniques were presented to the world as

a description and was just stored theoritically in GFS. So

people had knowledge of the technique but there was no

working model or code provided. Then in the year 2006

another major search engine, Yahoo came up with

techniques called HDFS and MapReduce based on the

descriptions given by Google. So, finally HDFS and

MapReduce became the two core components of Hadoop.

Hadoop was actually created by Doug Cutting.

Doug Cutting[2][7] choosed the logo of hadoop as an

elephant. The reason behind it is that, the elephant is

symbolic representation and a good solution for Big Data.

This paper covers many sections. Section II covers

about the Hadoop distributed file structure, and the

MapReduce component. Section III discusses the small file

problems and the existing approach. Section IV discusses

the proposed approach. Section V covers experimental

setup. Section VI discusses conclusion and future work and

then the paper is concerned with the acknowledgement for

the constant support provided to us.

II. HADOOP COMPONENTS

The two main components of Hadoop are HDFS and

MapReduce.HDFS(Hadoop Distributed File Structure) is

used for storing the files in Hadoop and also consists of two

nodes called NameNode and DataNode to split the given

data into blocks and then store them in respective blocks.

the HDFS that is it involves in processing large amount

structured and unstructured data in parallel in order to

maintain good performance for the system. The three major

components of this Hadoop architecture is as shown below

Figure 5: Hadoop Distributed File System Architecture

A.NameNode

NameNode is an center piece of an HDFS file system. It

keeps the directory tree of all the system and tracks where

across the cluster file data is kept and it does not store the

data of these files itself.Client applications talk to

NameNode whenever they wish to locate a file,or when they

want to add/copy/move/delete a file.The NameNode

responds the successful requests by returning a list of

relevant DataNode servers where the data lives.Hence these

nodes are called Master Nodes.These also consists

JobTracker which is a deamon runs on the Name Node.The

secondary NameNode is connected to the NameNode which

access acts a backup by storing replicas of the metadata of

the file systems in local storage.

B.DataNode

A DataNode are refered as slave nodes since they follow the

commands given by the NameNodes. They store data in the

mailto:chethanr95@gmail.com
mailto:mangalacn.02@gmail.com

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 462

Hadoop File System.A functional filesystem has more than

one

DataNode, with data replicated across them. On startup,a

DataNode connects to the NameNode;spinning until that

service comes up and then responds to requests from the

NameNode for filesystem operations. Client applications can

directly talk to the DataNode,once the NameNode has

provided the location of the data. TaskTracker is a deamon

process on the DataNode which indeed should be deployed

on the same servers that host DataNode instances.

C.HDFS Client

HDFS Clients are neither master nor slave,

Submit MapReduce

Describe how the

data should be

memory. HAR files work by building a layered file system

on top of HDFS.

A HAR file is created using the hadoop archieve

command,which runs a MapReduce job to pack the files

being archieved into a small number of HDFS files. The

below figure 3 shows the architecture of HAR which is

containing two index called Index and MasterIndex..Reading

through files in HAR is comparatively slower than reading

the files in HDFS because HAR files requires two ‗index‘

file reads as well as the data file read.

This is one of the disadvantage of HAR file.

In order to overcome the disadvantage of this HAR the

locality of speed in HAR should be improved in order to

increase the speed of access.

Data

Hadoop Client

Retrieves the data
 I

and sees the response
after job completion

Figure 2:HDFS Client structure

rather play role of loading the data into cluster, submit

MapReduce jobs describing how the data should be

processed and then retrieve the data to see the response after

the completion of the given job.

III. SMALL FILE PROBLEMS IN HADOOP AND

EXISTING APPROACHES

The Hadoop Distributed File system is a distributed file

system mainly designed for batch processing of large

volume of data. The default block size of HDFS is 64MB.

Storing lot of small files which are extreamly smaller then

the block size cannot be efficiently handled by HDFS. When

data is represented in files significantly smaller than the

block size the performance degrades dramatically[5]. Mainly

there are two reasons for producing small files.One reason is

some files are pieces of a larger logical file.Other reason is

some small files cannot be combined together into one larger

file and are essentially small.When small files are used there

will be lots of seeks and lots of hopping from DataNode to

DataNode to retrieve each small file which is an inefficient

data access pattern[6]. Hadoop offers few options to handle

these small files problems.They are as follows:

1) CONSOLIDATOR

Consolidator takes a set of files containing records

belonging to the same logical file and merges the files

together into larger files. It is possible to merge all small

files into one large file,but it is not practical as then it would

be a terabytes sized file.It would take a longer time to run

such a huge file.

2) HAR FILES[6][9]

Hadoop Archieves were introduced to HDFS to alleviate the

problem of lots of files putting pressure on the NameNodes

F F F F

F

Figure 3: HAR File Layout

3) USING HBASE STORAGE

HBase stores data in MapFiles(indexed Sequence Files) and

therefore it is a good choice when it is need to do

MapReduce streaming analysiswith the occasional random

look up. But the major problem is it doesn‘t allows partial

keys completely and allows only one default sort per table.

4) SEQUENCE FILES[6][9]

Sequence files in a Hadoop specific archieve file format to

tar and zip. The below figure shows Sequence file layout and

the concept behind this is to merge the file set with using a

key and a value pair and this created files are known as

‗Hadoop Sequence Files‘. In this method file name is used as

key and file content is used as value but it is very much time

consuming to convert existing data into sequence files.

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 463

vi. After this the list becomes empty and fetches the new

input file.

D K V

K V K V

Algorithm for Reducer in MapReduce

i. Take the input from Mapper.

ii. Merge the files considering the threshold.

Figure 4: SequenceFile File Layout

IV. PROPOSED APPROACH

In this section, details of the proposed approach are

introduced. Initially the idea of the approach is defined and

the the algorithm and the mathematical model is described.

Storing large number of small files into HDFS is an

overhead in terms of memory usage of NameNode and

increase in executing time of MapReduce. According to this

problem analysis, the proposed approach was merging the

selective small files into respective blocks of Hadoop and

hence make them a large file. Hence this will reduce the

number of files and saves the memory of HDFS. Before

merging all the small files together we determine the files of

same format stored in the blocks of Hadoop, then these small

files can be combined in parallel using MapReduce

paradigm where Mapper will fetch the file and during these

mapping technique the Mapper should provide a key and

value for these small files inorder to fetch them. In this

approach Mapper is made to provide keys for the file which

is the byte offset and the value for these files will be the

filename. Now the Mapper starts adding the files until it

reaches the default block size and then pass it to reducer.

The reducer will merge the files. This process is then carried

out parallel until all the files are completely merged. This

approach will reduce the time required for merging and

executing the files and also makes it easier to access a file of

particular format in the whole blocks of Hadoop. This

approach also reduces the time of execution by ignoring to

merge those files whose size is more than the threshold

which is set to 80%(0.8) of the block size of Hadoop. This

threshold can also be given as an input to the algorithm and

it should be a integer number between range 0 to 1.

Algorithm for Map in MapReduce

i. Identify and fetch the small files and place them in a

block of Hadoop knowing their filename and

filesize.

ii. Consider the respective filename as key and filecontent

as value for all the individual files in the block.

iii. If the file size is greater than the threshold ignore to add

in the list.

iv. Maintain a list of block name(key given to block) and

file names for merging which is to be done by

reducer.

v. Pass this entire list to Reducer.

Mathematical Model

Let be the set of Keys in , let be the multiset of

values , and let denote the multiset of values in

 that have key K. and can be

partitioned across machines such that all machines get

bits, and the pair gets sent to the same

machine.

Proof : For a set of binary strings B denoted by s(B)=bЄB

|b| the total space used by the strings in B. Since the

algorithm is in MRC, by definition,

s(+ ≤ =

Furthermore , the space of the reducer is restricted

to ; therefore ¥ K,) is

We can conclude that maximum number of bits mapped to

any one machine is no more than the average load per

machine plus the maximum size of pair.

Thus,

≤ + max(KЄ

(|K|+s(

≤ +

≤

V. EXPERIMENTAL ANALYSIS

In this paper, we use the experiment of WordCount to test

the performance HDFS using MapReduce in processing and

storing the small files. This experiment can be performed for

data of any format as of now we are providing the setup only

for text file and also we compare the processing time

required by proposed approach and the previous existing

approaches for the same experiment.

WordCount

WordCount is a problem which is used to determine the

count of repeatation of the words in the given file or data.

The experiment was conducted by creating a text document

and we appended it with some texts like ―hello how are you

hope you are good‖ and with some more text but the above

text shows the data that was split and stored into a block of

HDFS.

MapReduce consists of 3 components Mapper, Shuffel and

Combine, Reducer. Now this data is sent to Mapper by

NameNode and and Mapper takes two input Key and Value

and returns two outputs that is the same Key and Value.Now

Mapper divides each word and text into a single split and

each splits are executed parallely. The Key for Mapper is the

byte offset and the value is the content.

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 464

0

1

2

-

H 1

e 1

l 1
l
o

Figure 5: Mapper function

The value 1 which is given as an output indicates the index

value for the corresponding splits.Now this output is given

to the Shuffle and Combiner of MapReduce which combines

the index value of the repeated words into a single block

Figure 6: Shuffel and Combine function

After the completion of the shuffle and combine task the

obtained output is sent to the last component of MapReduce

that is Reducer which counts the number of index values and

replace it by corresponding value and hence this provides

the total number of count of a particular word in a given text

file for the WordCount problem. The below figure shows the

function performed by the reducer after taking the input

from the Shuffel and Combine component.

Hel 1

lo 1

1

Ho

w

Hel 1

lo 1
2

Ho

w

Figure 7: Reducer function

Once after performining the experiment with the proposed

approach and the existing approaches we compared the

execution time of all these approaches using a graph and

then we came to the conclusion that the proposed system can

perform more well in terms of execution time and the

memory management.

Figure 8: Comparision of different approaches of execution

time on different sized files

The above graph in figure 8 depicts that the proposed

approach takes less amount of time to execute the small file.

In HAR approach there is inconsistency with the block size.

Sequence file takes lot much of time to text data to sequence

file format therefore we have not considered this approach

and Original HDFS also takes lot of time to execute the

application for small files and the proposed approach takes

less amount of time for its execution since all the splits given

to the Mapper by the NameNode are executed parallel and

hencr reduces the number of Mappers which in turn

increases the performance of the Hadoop by decreasing the

execution time required for processing the small files.

VI. CONCLUSION AND FUTUREWORK

Hadoop is being one of the wide area of research in

handling of small files in HDFS, hence the following

research focuses on MapReduce approach to handle the

small files and retrieve them using the key values given to

the merged files. The proposed approach also focuses on

execution time to run small files on Hadoop Cluster and

hence the performance of HDFS. This can handle both

sequence file and files of text, pdf etc which is related only

to text file efficiently and also avoid files whose size is

greater than threshold.

In future, work can be carried out to other files like

audio,vedio and image files which are also a kind of small

file. These files can be stored in HDFS and they also suffer

performance issues which were faced with the small files

discussed previously.

ACKNOWLEDGMENT

We would like to thank Mrs.Mangala.C.N, Associate

Professor, Department of Computer Science and

Engineering, East West institute of technology for her

constant support and her guidance and also for providing us

the opportunity to contribute on the small file problems

faced by Hadoop. At last we also thank all faculty members

of Department of Computer Science and Engineering for

helping us in this work.

REFERENCES
[1] Manghui Tu, Peng Li, I-Ling Yen, BhavaniThuraisingham, Latifur

Khan.Secure Data Objects Replication in Data Grid., IEEE Transactions on

Dependable and Secure computing, Vol. 7, No. 1,2010

[2] Apache Hadoop, http: //hadoop.apache.org/

[3] P. H. Cams, W. B. Ligon III, R. B. Ross, and R. Thakur, PVFS: A

parallel file system for Linux clusters, in Proc. of 4th Annual Linux

Showcaseand Conference, 2000, pp. 317327.

1 Hello

How 1

Are 1,1

You 1,1

Hope 1

good 1

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 465

[4] Hong Sha, Yang Shenyuan, Key technology of cloud computing and

research on cloud computing model based on Hadoop, Software

Guide,2010,9(9): 9 I I.

[5] Xie Guilan, Luo shengxian, Research on applications based on

Hadoop MapReduce model, Microcomputer & its applications, 2010, (8):

4 7.

[6] The-small-files-problem, Cloudera

http://blog.cloudera.comlblog/ 2009/02/the-small-files-probleml,

February 2009

[7] Dhruba Borthakur, The Hadoop Distributed File System: Architecture

and Design, ACM 2006

[8] Amazon Web Services, http://aws.amazon.comlec 2/, 2006

[9] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler

"The Hadoop Distributed File System" IEEE 2010

[10] Techniques-to-deal-with-small-files-in.html,

http://hadoopshares.blogspot.in /2012/09/techniques-to-deal-with-

smallfiles- in.html, September 2012

AUTHORS BIOGRAPHY

Mrs.Mangala.C.N received the B.E degree

in Computer science and Engineering from

NCET, Bangalore, VTU University in 2006

and got M.Tech degree in Computer

Science from RVCE, Bangalore, India. She

is currently working as Associate Professor

in the faculty of CSE,EWIT-Bangalore,

India. Her area of interest includes Image Processing, Data

Mining and Big Data.

Mr.Chandan Kumar is persuing his B.E in

Computer Science and Engineering in East

West institute of Technology, Bangalore,

India. His area of interest includes Big Data,

Data Mining and Network Security.

Mr.Jayanth Kumar.S is persuing his B.E in

Computer Science and Engineering in East

West institute of Technology, Bangalore,

India. His area of interest includes Big

Data, Data Mining and Cloud Computing.

Mr.Girish.H.J is persuing his B.E in

Computer Science and Engineering in East

West institute of Technology, Bangalore,

India. His area of interest includes Big

Data, Cloud Computing and Network

Security.

Mr.Chandan Kumar is persuing his B.E in Computer

Science and Engineering in East West institute of

Technology, Bangalore, India. His area of interest includes

Big Data, Data Mining and Cloud Computing.

http://blog.cloudera.comlblog/
http://aws.amazon.comlec/
http://hadoopshares.blogspot.in/

