
International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 452

Implementation of Extended MapReduce for Emerging

BigData Analytics
Nayana N Kumar, Jayashree L K

Department of Computer Science,

Vemana Institute of Technology, Bengalaru-34, Karnataka

nayana.nayu14@gmail.com, jayashree_nov26@yahoo.com

ABSTRACT-Now a day‘s there is a need for managing huge amount of data in a faster rate is due to modern internet

applications. As new upcoming data are arriving continuously, the result of data mining application becomes out of date over

a period of time. This is one of the challenging jobs for computer organization to come out with new techniques and idea for

handling data processing on large datasets at optimum response times. To manage vast amount of data it is required to

refresh the results of mining which avoids the re computation cost from scratch. MapReduce is a technique which works

based on several processors to provide automatic parallelization and distribution of computation. MapReduce framework

and its open-source implementation Hadoop provides large computation environment for analysis of large-scale dataset

processing and handling of dataset. This paper is focused on framework called ExtendedMapReduce, to manage the iterative

operations by using map and reduce functions automatically without the user‘s involvement. After number of iterations small

amount of updates may propagates to affect larger number of intermediate states. Which helps in improving the job running

time and decreases the Incremental interactive processing time of refresh the result of big data.

Keywords –Data mining, ExtendedMapReduce, Incremental interactive process, Hadoop, MapReduce

I. INTRODUCTION

Many industries and organization uses big data processing

technique, which is one of the trusted technologies to handle

increasing amount of huge data. To improve the quality of

existing services and to provide attractive new service it is

important to extract important and valuable information

from vast data sets, such as analysis of web-data, processing

of logs and click analysis. Evaluating the huge amount of

data obtained from different sources create a big challenges

to the fields of science, mainly those involving massive-scale

simulations and sensor networks.Modern Internet

applications have created a need to manage immense

amounts of data quickly. For example in social networking

sites, the data produced by the user is increasing very fast

every year. Big data is one of the popular techniques to take

business decisions and to give better quality services. The

information which is sorted and filed in the server of the

organization was just data until yesterday .Suddenly the term

BigData became famous and now the data filed in the

company is nothing but BigData.

Involving different devices and applications data is produced

which is called BigData. BigData is important in giving

more accurate analysis, which may direct to more actual

decision making and resulting in reduction in cost, decreased

risk for business and greater operational efficiencies. To

keep the extracted data up to date, periodical refreshing of

mining computation is required in many situations. For

analyzing BigData many frameworks have been designed.

MapReduce [1] is one of the simple, generalized, framework

built on Hadoop which is used for several productions.

MapReduce implementation is done in large collection of

computers to perform common calculations on large scale

data effectively. This supports computation during hardware

failure.

This paper is mainly focused on improving MapReduce

technique. It supports incremental iterative process to timely

accommodate new changes to the underlying data sets.

ExtendedMapReduce is advanced MapReduce technique

and most sophisticated iterative computation to support key-

value pair level incremental processing and extensively used

in data mining applications. ExtendedMapReduce supports

advanced approach called Incremental processing [2] [3], to

refreshing mining results. Given the size of the input

BigData it becomes very difficult to return the whole

computation from scratch. Incremental processing technique

takes new data from large data set, consider this as state as

implicit input and combines it with new data.

II. MAP REDUCE BACKGROUND

MapReduce is one of the trusted techniques of computation;

it handles large scale computations which help to stand the

hardware faults. MapReduce has two main functions, called

Map and Reduce. It splits the input data-set into independent

chunks, and it is processed completely in parallel manner.

For MapReduce computations refer Fig.1.

MapReduce supports the parallel execution, coordination of

tasks that execute Map or Reduce, and also in handling one

of the task that fails to execute. Key-Value pairs <K, V>

sequences are turned into chunks by map task. By using

input data, key-value pairs are produced, which is

determined by the code written by the user for the Map

function.

Each map task contains key-value pairs, are composed by a

master controller and sorted by key. In reduce stage keys are

divided among all, so the same reduced task wind up with

same key with all key-value pairs. The reduce task processed

on one key at a time and join all the values linked with that

key in some way. For the reduce function the way of

grouping of values is done by the code written by the user.

mailto:nayana.nayu14@gmail.com
mailto:jayashree_nov26@yahoo.com

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 453

Figure 1.MapReduce computation

III. SYSTEM ARCHITECTURE

The system architecture of ExtendedMapReduce is shown in

Fig.2.The implementation of ExtendedMapReduce is

executed on a huge dataset and is extremely scalable. And

this system can processes many terabytes of data on

thousands of machines. Let us consider online data sets, by

using ETL process (Extract, transform and Load), it reads

the data and sends to apache Solr [4].Apache Solr is one of

the open source API (Application Program Interface),is also

called as NO-SQL Database, it is used as search engine for

big data and accommodate data in XML(Extensible Markup

Language). The performance analysis and difference with

basic MapReduce and ExtendedMapReduce is shown by

using K-Means Algorithm with Map Reduce Algorithm.

Then for offline data set, PageRank algorithm along with

MapReduce algorithm is used. For example in student

database in stand Ford University the analytics is done on

the student data along with iterative Algorithm

implementation.

Figure 2.System Architecture

IV. IMPLEMENTATION

 Analyzing Iterative Computation

PageRank [5] is a well suited web graph ranking algorithm.

For each vertex in a graph ranking score will be computed

by PageRank. The MapReduce job iteration is performed

only after initializing all ranking scores which is shown in

algorithm 1. In hyperlinked set of web pages, the PageRank

calculates the numerical value for each element which

reflects the probability that a random surfer will access that

page.The method of PageRank can be considered as a

Markov Chain [6] which needs iterative calculations to

converge. Based on values calculated in the previous

iteration, iteration of PageRank calculates the new access

probability for each webpage. This process will continue till,

the number of present iterations is larger than predefined

maximum iterations, or the Euclidian distance between rank

values in two subsequent iterations is less than a predefined

threshold that handle the accuracy of the output results.

PageRank and MapReduce well suited with each other.

Working procedure of these is as given below. It initiate

with big data set called as D that has been divided into

number of blocks i.e D1, D2…Dm. These blocks are

circulated across different machines, such that each blocks

on one machine. Let us consider Di is on machine i. These

blocks are also replicated, MapReduce can ignore this. The

main lamination to consider is that each machines has less

memory compared to D. Now proceeds in rounds, each with

3 steps.

1. Mapper: Translate all d ∈ D to (key (d), value (d))

2. Shuffle: Moves all (k, v) and (k 0, v 0) with k = k 0 to

same machine.

3. Reducer: Transforms {(k, v1), (k, v2) . . .} to an output

D0 k = f(v1, v2, . . .).

Combiner: If one machine had multiple number of key

value pairs i.e. (k, v1), (k, v2) with same key k, than reduce

will perform before shuffle.

PageRank on MapReduce: v1 here is a first step. Break M

into k vertical stripes M = [M1 M2 . . . Mk] so each Mj fits

on a machine. Break q into q T = [q1 q2 . . . qk] (a

horizontal split), again so each qj fits on a machine with Mj

(This can be assumed how the data is stored, or can be done

in a earlier round of MapReduce if not.) Now in each round:

• Mapper: j → (key= j 0 ∈ [k]; value = row r of Mj ∗ qj)

• Reducer: adds values for each key i to get qi+1[j] ∗ β + (1

− β)/n.

The output of each mapper is considered as whole vector

qi+1 or length n, each stripe Mj has n/k full columns. This

process is feasible because qi+1 on has as many non-zero

entries as Mj. However, it is not getting that much out of the

combiner phase. It will see next how this can be improved.

PageRank on MapReduce: v2

Let √ k and tile M into ` × ` blocks

M = M1,1 M1,2 . . . M1,` M2,1 M2,2 . . . M2,`

. . M`,1 M`,2 . . . M`,`

• Mapper: Each of k machines get one block Mi,j and get

sent qi for i ∈ [`]. • Reducer: On each row i0 adds Mi,j qi to

q[i0]. Then does q+ [i0] = q[i0]β + (1 − β)/n.

 K-means Clustering

K-means [7] is the most common and well used algorithm

in clustering method. It takes input as parameter k and split a

set of objects into k clusters. The result of intra-cluster is

high and inter cluster similarity is low. The similarity of

cluster is calculated using mean value of objects in the

cluster.

The algorithm contains following steps. Firstly, it randomly

chooses k objects from the entire objects, it represents the

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 454

initial cluster centers. Based on the distance between the

object and the cluster center the remaining object is assigned

to the cluster to which it is the most similar. The new mean

value for each cluster is calculated. This process iterates

until the criterion function converges. In this algorithm,

calculation of distances is considered the most intensive

calculation. For iteration it is required to compute total

distance (nk), where n is a number of objects and k is the

number of clusters being created. It is not relevant to

compute distance between one object with the centers to the

distance computations between other objects with the

corresponding centers. So distance computations between

different objects with centers executed parallel.

In iteration, the new centers, used in the next iteration,

should be updated. Hence the iterative procedures serially

executed.

To identify and handle the input and output of the

implementation is the first step in designing the MapReduce

for K-Means. The input is provided as a key-value pair,

where ‗key‘ is the center of cluster and ‗value‘ is the

serializable implementation of vector in the data set. Once it

set the cluster and selects the centroids, and defined the data

vectors that are to be clustered properly, arranged in two

files then the K-Means clustering technique can be used

along with Map and Reduce technique. The input directory

of HDFS (Hadoop Distributed File System) prior to Map

routine is contains set of centers .They form a ‗key‘ field in

the pair.

Mapper routine [8] is coded with the instruction needed to

calculate the between the given data set and cluster center

fed as a pair. The Mapper computes the distance between the

vector value and every cluster centers mentioned in the

cluster set. At the same time it also keeps track of the cluster

which provide closet vector. After completion of calculation

of distance, the vector is assigned to the cluster which is

nearest.

It needs two main file to implement the Map and Reduce

.One that houses the clusters with their centroids and another

is houses the vectors to be clustered. Once Mapper is

triggered the specified vector is set to the cluster that it is

closest related to. After completion of this task, the

recalculation is done on centroid of that, particular cluster.

The reduce routine perform recalculation and prevent

creations of clusters with extreme sizes (cluster having too

less data vectors or a cluster having too many data vectors)

by restructuring the cluster At the final stage, the centroid of

the given cluster is updated, and re written the new set of

vectors and clusters on disk which is ready for the next

iteration. After understanding of what the input, output and

functionality of the Map and Reduce routines it design the

Map and Reduce classes by following the algorithm

discussed below.

Algorithm 1. map (key, value)

Input: Global variable centers, the offset key, the sample

value

Output: pair, where the key‘ is the index of the closest center

point and value‘ is a string comprise of sample information

1. Construct the sample instance from value;

2. minDis = Double.MAX VALUE;

3. index = -1;

4. For i=0 to centers.length do dis= ComputeDist(instance,

centers[i]); If dis < minDis { minDis = dis; index = i; }

5. End For

6. Take index as key‘;

7. Construct value‘ as a string comprise of the values of

different dimensions;

8. output < key , value > pair; 9. End

Algorithm 2. reduce (key, V)

Input: key is the index of the cluster, V is the list of the

partial sums from different host Output: < key , value > pair,

where the key‘ is the index of the cluster, value‘ is a string

representing the new center

1. Initialize one array record the sum of value of each

dimensions of the samples contained in the same cluster, e.g.

the samples in the list V ;

2. Initialize a counter NUM as 0 to record the sum of sample

number in the same cluster;

3. while(V.hasNext()){ Construct the sample instance from

V.next(); Add the values of different dimensions of instance

to the array NUM += num;

4. }

5. Divide the entries of the array by NUM to get the new

center‘s coordinates;

6. Take key as key‘;

7. Construct value‘ as a string comprise of the center‘s

coordinates;

8. output < key , value > pair;

9. End

V. RESULTS
Finally comparing difference between Normal MapReduce

and ExtendedMapReduce for different applications like K-

means clustering and PageRank the Overall performance

analysis of ExtendedMapReduce is as shown in Fig. 3.In

every iteration, map function avoids reading and parsing the

structure data by splitting the structure and state data. With

incremental processing, the performance will improved in

ExtendedMapReduce, so reducing the Normal MapReduce

by 98%. When compared to Normal MapReduce, the

advanced ExtendedMapReduce shuffles and input changes

will affect the intermediate kv-pairs from the Map instances.

Thereby further improving the shuffle time, achieving 95%

reduction of NormalMapReduce time. For the sort stage,

ExtendedMapReduce sorts the little number of kv-pairs from

the changed Map instances, thus eliminating almost all

sorting cost of NormalMapReduce. For the Reduce stage,

iterMapReduce cuts the run time of Normal MapReduce by

80% because it does not require combining the updated state

data and the structure data.

Figure 3 Performance of ExtendedMapReduce.

International Journal of Advanced Networking & Applications (IJANA) ISSN: 0975-0282

1st International Conference on Innovations in Computing & Networking (ICICN16), CSE, RRCE 455

CONCLUSION

The ExtendedMapReduce is advanced MapReduce

technique that supports the iterative processing for large

datasets and give solution to the issues which arises during

MapReduce implementation of iterative processing. It offers

an environment and a model to the programmers for

designing and to perform explicitly for iterative algorithms

and moreover suggesting the concept of persistent tasks to

carry out the iterative computation to keep away from

continually creating, destroying, and scheduling tasks. In

same iteration, it can also perform asynchronous execution

of tasks, to accelerate the processing speed.

FUTURE ENHANCEMENT

As a result of the incremental processing, the MRBGraph

file may contain multiple segments of sorted chunks, each

resulting from a merge operation. So this situation needs to

be improved and there is a need to enhance the query

algorithm with a multi-window technique to efficiently

process the multiple segments.

REFERENCES

[1] J. Dean and S. Ghemawat, ―Mapreduce: simplified data

processing on large clusters,‖ in Proc. of OSDI ’04, 2004. [2]

D. Peng and F. Dabek, ―Large-scale incremental

processing using distributed transactions and notifications,‖

in Proc. Of OSDI ’10, 2010, pp. 1–15.

[3]P.Bhatotia, AWider R and R.Pasquin,‖Incoop:Mapreduce

for incremental computations‖,in Proc. Of SOCC ’11,2011

[4] Apache giraph. http://giraph.apache.org/.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

Mc-Cauley, M. J. Franklin, S. Shenker, and I. Stoica,

―Resilient distributeddatasets: A fault-tolerant abstraction

for. in-memorycluster computing,‖ in Proc. of NSDI ’12,

2012.

[6]S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl,

―Spinning fast iterative data flows,‖ PVLDB, vol. 5, no. 11,

pp. 1268–1279, 2012.

[7] Y. Zhang, Q. Gao, L. Gao, and C. Wang, ―imapreduce:

A Distributed computing framework for iterative

computation,‖ J. Grid Comput., vol. 10, no. 1, 2012.

[8] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst,

―Haloop: efficient iterative data processing on large

clusters,‖ PVLDB, vol. 3, no. 1-2, pp. 285–296, 2010.

Biographies and Photographs

Nayana N Kumar received the B.E. degree

in 2014 from Visvesvaraya Technological

University. Currently, she is an M.Tech.

Candidate in computer science, Vemana IT

Bengaluru Karnataka. Her research interests

include Data mining and BigData processing.

Jayashree L K is an Asst. professor at

Vemana IT. And working from past 15 years

in Dept. of CSE, Vemana IT Bengaluru

Karnataka. Her current research interests are

data ware housing and analysis of BigData.

http://giraph.apache.org/

