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ABSTRACT-Now a day‘s there is a need for managing huge amount of data in a faster rate is due to modern internet 

applications. As new upcoming data are arriving continuously, the result of data mining application becomes out of date over 

a period of time. This is one of the challenging jobs for computer organization to come out with new techniques and idea for 

handling data processing on large datasets at optimum response times. To manage vast amount of data it is required to 

refresh the results of mining which avoids the re computation cost from scratch. MapReduce is a technique which works 

based on several processors to provide automatic parallelization and distribution of computation. MapReduce framework 

and its open-source implementation Hadoop provides large computation environment for analysis of large-scale dataset 

processing and handling of dataset. This paper is focused on framework called ExtendedMapReduce, to manage the iterative 

operations by using map and reduce functions automatically without the user‘s involvement. After number of iterations small 

amount of updates may propagates to affect larger number of intermediate states. Which helps in improving the job running 

time and decreases the Incremental interactive processing time of refresh the result of big data. 
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I. INTRODUCTION 

Many industries and organization uses big data processing 

technique, which is one of the trusted technologies to handle 

increasing amount of huge data. To improve the quality of 

existing services and to provide attractive new service it is 

important to extract important and valuable information 

from vast data sets, such as analysis of web-data, processing 

of logs and click analysis. Evaluating the huge amount of 

data obtained from different sources create a big challenges 

to the fields of science, mainly those involving massive-scale 

simulations and sensor networks.Modern Internet 

applications have created a need to manage immense 

amounts of data quickly. For example in social networking 

sites, the data produced by the user is increasing very fast 

every year. Big data is one of the popular techniques to take 

business decisions and to give better quality services. The 

information which is sorted and filed in the server of the 

organization was just data until yesterday .Suddenly the term 

BigData became famous and now the data filed in the 

company is nothing but BigData. 

Involving different devices and applications data is produced 

which is called BigData. BigData is important in  giving 

more accurate analysis, which may direct to more actual 

decision making and resulting in reduction in cost, decreased 

risk for business and greater operational efficiencies. To 

keep the extracted data up to date, periodical refreshing of 

mining computation is required in many situations. For 

analyzing BigData many frameworks have been designed. 

MapReduce [1] is one of the simple, generalized, framework 

built on Hadoop which is used for several productions. 

MapReduce implementation is done in large collection of 

computers to perform common calculations on large scale 

data effectively. This supports computation during hardware 

failure. 

This paper is mainly focused on improving MapReduce 

technique. It supports incremental iterative process to timely 

accommodate new changes to the underlying data sets. 

 

ExtendedMapReduce is advanced MapReduce technique  

and most sophisticated iterative computation to support key- 

value pair level incremental processing and extensively used 

in data mining applications. ExtendedMapReduce supports 

advanced approach called Incremental processing [2] [3], to 

refreshing mining results. Given the size of the input 

BigData it becomes very difficult to return the whole 

computation from scratch. Incremental processing technique 

takes new data from large data set, consider this as state as 

implicit input and combines it with new data. 

 

II. MAP REDUCE BACKGROUND 

MapReduce is one of the trusted techniques of computation; 

it handles large scale computations which help to stand the 

hardware faults. MapReduce has two main functions, called 

Map and Reduce. It splits the input data-set into independent 

chunks, and it is processed completely in parallel manner. 

For MapReduce computations refer Fig.1. 

MapReduce supports the parallel execution, coordination of 

tasks that execute Map or Reduce, and also in handling one 

of the task that fails to execute. Key-Value pairs <K, V> 

sequences are turned into chunks by map task. By using 

input data, key-value pairs are produced, which is 

determined by the code written by the user for the Map 

function. 

Each map task contains key-value pairs, are composed by a 

master controller and sorted by key. In reduce stage keys are 

divided among all, so the same reduced task wind up with 

same key with all key-value pairs. The reduce task processed 

on one key at a time and join all the values linked with that 

key in some way. For the reduce function the way of 

grouping of values is done by the code written by the user. 
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Figure 1.MapReduce computation 

 

III. SYSTEM ARCHITECTURE 

The system architecture of ExtendedMapReduce is shown in 

Fig.2.The implementation of ExtendedMapReduce is 

executed on a huge dataset and is extremely scalable. And 

this system can processes many terabytes of data on 

thousands of machines. Let us consider online data sets, by 

using ETL process (Extract, transform and Load), it reads 

the data and sends to apache Solr [4].Apache Solr is one of 

the open source API ( Application Program Interface),is also 

called as NO-SQL Database, it is used as search engine for 

big data and accommodate data in XML(Extensible Markup 

Language). The performance analysis and difference with 

basic MapReduce and ExtendedMapReduce is shown by 

using K-Means Algorithm with Map Reduce Algorithm. 

Then for offline data set, PageRank algorithm along with 

MapReduce algorithm is used. For example in student 

database in stand Ford University the analytics is done on 

the student data along with iterative Algorithm 

implementation. 
 

Figure 2.System Architecture 

 

IV. IMPLEMENTATION 

 Analyzing Iterative Computation 

PageRank [5] is a well suited web graph ranking algorithm. 

For each vertex in a graph ranking score will be computed 

by PageRank. The MapReduce job iteration is performed 

only after initializing all ranking scores which is shown in 

algorithm 1. In hyperlinked set of web pages, the PageRank 

calculates the numerical value for each element which 

reflects the probability that a random surfer will access that 

page.The method of PageRank can be considered as a 

Markov Chain [6] which needs iterative calculations to 

converge. Based on values calculated in the previous 

iteration, iteration of PageRank calculates the new access 

probability for each webpage. This process will continue till, 

the number of present iterations is larger than predefined 

maximum iterations, or the Euclidian distance between rank 

values in two subsequent iterations is less than a predefined 

threshold that handle the accuracy of the output results. 

PageRank and MapReduce well suited with each other. 

Working procedure of these is as given below. It initiate  

with big data set called as D that has been divided into 

number of blocks i.e D1, D2…Dm. These blocks are 

circulated across different machines, such that each blocks 

on one machine. Let us consider Di is on machine i. These 

blocks are also replicated, MapReduce can ignore this. The 

main lamination to consider is that each machines has less 

memory compared to D. Now proceeds in rounds, each with 

3 steps. 

1. Mapper: Translate all d ∈ D to (key (d), value (d)) 
 

2. Shuffle: Moves all (k, v) and (k 0, v 0) with k = k 0 to 

same machine. 
 

3. Reducer: Transforms {(k, v1), (k, v2) . . .} to an output 

D0 k = f(v1, v2, . . .). 
 

Combiner: If one machine had multiple number of key 

value pairs i.e. (k, v1), (k, v2) with same key k, than reduce 

will perform before shuffle. 
 

PageRank on MapReduce: v1 here is a first step. Break M 

into k vertical stripes M = [M1 M2 . . . Mk] so each Mj fits 

on a machine. Break q into q T = [q1 q2 . . . qk] (a  

horizontal split), again so each qj fits on a machine with Mj 

(This can be assumed how the data is stored, or can be done 

in a earlier round of MapReduce if not.) Now in each round: 
 

• Mapper: j → (key= j 0 ∈ [k]; value = row r of Mj  ∗ qj ) 

• Reducer: adds values for each key i to get qi+1[j] ∗ β + (1 

− β)/n. 
 

The output of each mapper is considered as whole vector 

qi+1 or length n, each stripe Mj has n/k full columns. This 

process is feasible because qi+1 on has as many non-zero 

entries as Mj. However, it is not getting that much out of the 

combiner phase. It will see next how this can be improved. 
 

PageRank on MapReduce: v2 
 

Let   √ k and tile M into ` × ` blocks 
 

M =  M1,1 M1,2 . . . M1,` M2,1 M2,2 . . . M2,` . . . . . . . . .  . 

. . M`,1 M`,2 . . . M`,` 
 

• Mapper: Each of k machines get one block Mi,j and get 

sent qi for i ∈ [`]. • Reducer: On each row i0 adds Mi,j qi to 

q[i0 ]. Then does q+ [i0] = q[i0 ]β + (1 − β)/n. 

 K-means Clustering 

K-means [7] is the most common and well used algorithm 

in clustering method. It takes input as parameter k and split a 

set of objects into k clusters. The result of intra-cluster is 

high and inter cluster similarity is low. The similarity of 

cluster is calculated using mean value of objects in the 

cluster. 

The algorithm contains following steps. Firstly, it randomly 

chooses k objects from the entire objects, it  represents    the 
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initial cluster centers. Based on the distance between the 

object and the cluster center the remaining object is assigned 

to the cluster to which it is the most similar. The new mean 

value for each cluster is calculated. This process iterates 

until the criterion function converges. In this algorithm, 

calculation of distances is considered the most intensive 

calculation. For iteration it is required to compute total 

distance (nk), where n is a number of objects and k is the 

number of clusters being created. It is not relevant to 

compute distance between one object with the centers to the 

distance computations between other objects with the 

corresponding centers. So distance computations between 

different objects with centers executed parallel. 

In iteration, the new centers, used in the next iteration, 

should be updated. Hence the iterative procedures serially 

executed. 

To identify and handle the input and output of the 

implementation is the first step in designing the MapReduce 

for K-Means. The input is provided as a key-value pair, 

where ‗key‘ is the center of cluster and ‗value‘ is the 

serializable implementation of vector in the data set. Once it 

set the cluster and selects the centroids, and defined the data 

vectors that are to be clustered properly, arranged in two 

files then the K-Means clustering technique can be used 

along with Map and Reduce technique. The input directory 

of HDFS (Hadoop Distributed File System) prior to Map 

routine is contains set of centers .They form a ‗key‘ field in 

the pair. 

Mapper routine [8] is coded with the instruction needed to 

calculate the between the given data set and cluster center 

fed as a pair. The Mapper computes the distance between the 

vector value and every cluster centers mentioned in the 

cluster set. At the same time it also keeps track of the cluster 

which provide closet vector. After completion of calculation 

of distance, the vector is assigned to the cluster which is 

nearest. 

It  needs  two  main file to  implement the Map  and Reduce 

.One that houses the clusters with their centroids and another 

is houses the vectors to be clustered. Once Mapper is 

triggered the specified vector is set to the cluster that it is 

closest related to. After completion of this task, the 

recalculation is done on centroid of that, particular cluster. 

The reduce routine perform recalculation and prevent 

creations of clusters with extreme sizes (cluster having too 

less data vectors or a cluster having too many data vectors) 

by restructuring the cluster At the final stage, the centroid of 

the given cluster is updated, and re written the new set of 

vectors and clusters on disk which is ready for the next 

iteration. After understanding of what the input, output and 

functionality of the Map and Reduce routines it design the 

Map and Reduce classes by following the algorithm 

discussed below. 

 

Algorithm 1. map (key, value) 

Input: Global variable centers, the offset key, the sample 

value 

Output: pair, where the key‘ is the index of the closest center 

point and value‘ is a string comprise of sample information 

1. Construct the sample instance from value; 

2. minDis = Double.MAX VALUE; 

3. index = -1; 

4. For i=0 to centers.length do dis= ComputeDist(instance, 

centers[i]); If dis < minDis { minDis = dis; index = i; } 

5. End For 

6. Take index as key‘; 

7. Construct value‘ as a string comprise of the values of 

different dimensions; 

8. output < key , value > pair; 9. End 

 
Algorithm 2. reduce (key, V ) 

Input: key is the index of the cluster, V is the list of the 

partial sums from different host Output: < key , value > pair, 

where the key‘ is the index of the cluster, value‘ is a string 

representing the new center 

1. Initialize one array record the sum of value of each 

dimensions of the samples contained in the same cluster, e.g. 

the samples in the list V ; 

2. Initialize a counter NUM as 0 to record the sum of sample 

number in the same cluster; 

3. while(V.hasNext()){ Construct the sample instance from 

V.next(); Add the values of different dimensions of instance 

to the array NUM += num; 

4. } 

5. Divide the entries of the array by NUM to get the new 

center‘s coordinates; 

6. Take key as key‘; 

7. Construct  value‘  as  a  string  comprise  of  the  center‘s 

coordinates; 

8. output < key , value > pair; 

9. End 

 

V. RESULTS 
Finally comparing difference between Normal MapReduce 

and ExtendedMapReduce for different applications like K- 

means clustering and PageRank the Overall performance 

analysis of ExtendedMapReduce is as shown in Fig. 3.In 

every iteration, map function avoids reading and parsing the 

structure data by splitting the structure and state data. With 

incremental processing, the performance will improved in 

ExtendedMapReduce, so reducing the Normal MapReduce 

by 98%. When compared to Normal MapReduce, the 

advanced ExtendedMapReduce shuffles and input changes 

will affect the intermediate kv-pairs from the Map instances. 

Thereby further improving the shuffle time, achieving 95% 

reduction of NormalMapReduce time. For the sort stage, 

ExtendedMapReduce sorts the little number of kv-pairs from 

the changed Map instances, thus eliminating almost all 

sorting cost of NormalMapReduce. For the Reduce stage, 

iterMapReduce cuts the run time of Normal MapReduce by 

80% because it does not require combining the updated state 

data and the structure data. 

 
Figure 3 Performance of ExtendedMapReduce. 
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CONCLUSION 

The ExtendedMapReduce is advanced MapReduce 

technique that supports the iterative processing for large 

datasets and give solution to the issues which arises during 

MapReduce implementation of iterative processing. It offers 

an environment and a model to the programmers for 

designing and to perform explicitly for iterative algorithms 

and moreover suggesting the concept of persistent tasks to 

carry out the iterative computation to keep away from 

continually creating, destroying, and scheduling tasks. In 

same iteration, it can also perform asynchronous execution 

of tasks, to accelerate the processing speed. 

 
FUTURE ENHANCEMENT 

As a result of the incremental processing, the MRBGraph  

file may contain multiple segments of sorted chunks, each 

resulting from a merge operation. So this situation needs to 

be improved and there is a need to enhance the query 

algorithm with a multi-window technique to efficiently 

process the multiple segments. 
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