
Special Conference Issue: National Conference on
Cloud Computing & Big Data 170

Modern Compiler Design: An approach to
make Compiler Design a Significant Study for

Students

Namit Bhati

Assistant Professor, JNU Jaipur
namit.gbu@gmail.com

---ABSTRACT---

Compiler Design is a common subject of most modern Computer Science undergraduate curriculum. However,

compiler design has become a highly specialized topic, and it is not clear that a significant number of Computer

Science students will find themselves designing compilers professionally. This paper is a thorough introduction to

compiler design, focusing on more low-level and systems aspects rather than high-level questions such as

polymorphic type inference or separate compilation. You will be building several complete end-to-end compilers for

successively more complex languages. Designing the content of compiler design courses to emphasize this broad

applicability can make them more relevant to students.

Keywords: Lex, Yacc, Lexeme, Semantically, Lexical, Syntactically, Intermediate codes, yy.c

--- -----------------------

1. Introduction

There are many examples of such translators—discussed

later in this paper-that fall outside the traditional model of
compilers; a lot of them don’t involve programming
languages at all. In each of these cases, however, the
translation process has roughly the same structure: an input
string is decomposed into tokens; the token sequence is
grouped into “phrases” whose structure is specified by
(something akin to) a context-free grammar; and these
phrases are finally mapped to the output sequence in a
manner determined by their structure and the context in
which they occur. Many of the issues that arise, including
the ways in which the input can be organized into tokens
and phrases and the ways in which such phrases can be
represented and manipulated, are very similar across all of
these examples. Focusing on these commonalities makes it
possible to present many traditional compiler techniques,
e.g., buffer management for lexical analysis, parsing
techniques for context-free languages, and attribute
evaluation and propagation in parse trees, in a much more
general setting that emphasizes their relevance to a
significantly wider range of applications. It also shows how
compiler development tools such as lex and yacc can be
applied for many translation problems that students do not
typically see as compilation problems.

1.1 Why Study Compilers?

Everything that computers do is the result of some
program, and all of the millions of programs in the world
are written in one of the many thousands of programming
languages that have been developed over the last 60 years.
Designing and implementing a programming language
turns out to be difficult; some of the best minds in

computer science have thought about the problems
involved and contributed beautiful and deep results [1,2].
Learning something about compilers will show you the
interplay of theory and practice in computer science,
especially how powerful general ideas combined with
engineering insight can lead to practical solutions to very
hard problems. Knowing how a compiler works will also
make you a better programmer and increase your ability to
learn new programming languages quickly.

2. Compiler Design: Overview

You will also understand some specific components of
compiler technology, such as lexical analysis, grammars
and parsing, type-checking, intermediate representations,
static analysis, common optimizations, instruction selection,
register allocation, code generation, and runtime organization.
The knowledge gained should be broad enough that if you
are confronted with the task of contributing to the
implementation of a real compiler in the field, you should
be able to do so confidently and quickly [3]. For many of
you, this will be the first time you have to write, maintain,
and evolve a complex piece of software. You will have to
program for correctness, while keeping an eye on
efficiency, both for the compiler itself and for the code it
generates. Because you will have to rewrite the compiler
from lab to lab, and also because you will be collaborating
with a partner, you will have to pay close attention to issues
of modularity and interfaces. Developing these software
engineering and system building skills are an important
goal of this class, although we will rarely talk about them
explicitly.

Special Conference Issue: National Conference on
Cloud Computing & Big Data 171

Fig: 2.1 structure of a compiler [1]

3. Phases of a Compiler

The execution of a compiler conceptually consists of
four phases:
1. Lexical Analysis

2. Syntax Analysis or Parsing

3. Semantic Analysis

4. Code Generation

5. Code Optimization

In this section discusses each such phase with regard to
how its ideas, concepts, and techniques can be useful in
translation problems outside the realm of traditional
compilation.

3.1 Lexical Analysis
As the first phase of a compiler, the main task of the lexical
analyzer is to read the input characters of the source
program, group them into lexemes, and produce as output a
sequence of tokens for each lexeme in the source program.
The stream of tokens is sent to the parser for syntax
analysis. It is common for the lexical analyzer to interact
with the symbol table as well [4]. When the lexical
analyzer discovers a lexeme constituting an identifier, it
needs to enter that lexeme into the symbol table. In some
cases, information regarding these interactions are
suggested in Fig. 3.1. Commonly, the interaction is
implemented by having the parser call the lexical analyzer.
The call, suggested by the getNext Token command, causes
the lexical analyzer to read characters from its input until it
can identify the next lexeme and produce for it the next
token, which it returns to the parser.

Fig: 3.1 overview of lexical Analysis [5]

Since the lexical analyzer is the part of the compiler that
reads the source text, it may perform certain other tasks
besides identification of lexemes.

One such task is stripping out comments and whitespace
(blank, newline, tab, and perhaps other characters that are
used to separate tokens in the input).

TOKENS, PATTERNS, AND LEXEMES:
When discussing lexical analysis, we use three related but
distinct terms:

Token: A token is a pair consisting of a token name and an
optional attribute value. The token name is an abstract
symbol representing a kind of lexical unit, e.g., a particular
keyword, or a sequence of input characters denoting an
identifier. The token names are the input symbols that the
parser processes. In what follows, we shall generally write
the name of a token in boldface. We will often refer to a
token by its token name [4, 5].

Pattern: A pattern is a description of the form that the
lexemes of a token may take. In the case of a keyword as a
token, the pattern is just the sequence of characters that
form the keyword. For identifiers and some other tokens,
the pattern is a more complex structure that is matched by
many strings [4, 5].

Lexeme: A lexeme is a sequence of characters in the
source program that matches the pattern for a token and is
identified by the lexical analyzer as an instance of that
token.

Fig: 3.2 a transition diagram for id's and keywords

Fig: 3.3 the transition diagram for a token number is

given

 If a dot is seen we have an optional fraction.

 State 14 is entered and we look for one or more
additional digits.

 State 15 is used for this purpose.

 If we see an E, we have an optional exponent, states 16
through 19 are used to recognize the exponent value.

 In the state 15, if we see anything other than E or digit,
then 21 is the end of the accepting state.

Special Conference Issue: National Conference on
Cloud Computing & Big Data 172

Fig: 3.4 a transition diagram for whitespace

is given below

In the diagram we look for one or more whitespace
characters represented by delim in the diagram –typically
these characters would be blank, tab, newline.

Use of Lex: An input file lex1 is written in the lex
language and describes the lexical analyzer to be generated.
The Lex compiler transforms lex1 to a c program in a file
that is always named lex.yy.c

Fig: 3.5 Use of Lex

LEX PROGRAM FOR TOKEN:

%{
/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */
%}
/* regular definitions */
delim [\t\nl
ws (delim)+
letter [A-Za-z]
digit [o-9]
id {letter} {(letter) | {digit})*
number {digit)+ (\ . {digit}+)? (E [+-] ?{digit}+)?

%%
{ws} (/* no action and no return */)
if {return(IF) ; }
then {return(THEN) ; }
else {return(ELSE) ; }
{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum() ;
 return(NUMBER) ; }
“<” {yylval = LT; return(REL0P); }
“<=” {yylval = LE; return(REL0P); }
“=” {yylval = EQ ; return(REL0P); }
“<>” {yylval = NE; return(REL0P);}
“>” {yylval = GT; return(REL0P);}
“>=” {yylval = GE; return(REL0P);}

 %%

int installID0 {/* function to install the lexeme, whose
first character is pointed to by yytext,
and whose length is yyleng, into the
symbol table and return a pointer
thereto */

 }
 int installNum() {/* similar to installID, but puts

numerical constants into a separate table */

}

3.2 SYNTAX ANALYSIS

Syntax analysis is the second phase of the compiler. It gets
the input from the tokens and generates a syntax tree or
parse tree [1].

Advantages of grammar for syntactic specification :
1. A grammar gives a precise and easy-to-understand

syntactic specification of a programming language.
2. An efficient parser can be constructed automatically

from a properly designed grammar.
3. A grammar imparts a structure to a source program

that is useful for its translation into object code and for
the detection of errors.

4. New constructs can be added to a language more easily
when there is a grammatical description of the
language.

Fig: 3.6 Example for Syntax analysis

THE ROLE OF PARSER

The parser or syntactic analyzer obtains a string of tokens
from the lexical analyzer and verifies that the string can be
generated by the grammar for the source language. It
reports any syntax errors in the program[7,8]. It also
recovers from commonly occurring errors so that it can
continue processing its input.

Fig: 3.7 Parser

Special Conference Issue: National Conference on
Cloud Computing & Big Data 173

Functions of the parser:

1. It verifies the structure generated by the tokens based
on the grammar.

2. It constructs the parse tree.
3. It reports the errors.
4. It performs error recovery.

Issues Of parser:

1. Variable re-declaration
2. Variable initialization before use.
3. Data type mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

Syntax error handling:
Programs can contain errors at many different levels. For
example:
1. Lexical, such as misspelling a keyword.
2. Syntactic, such as an arithmetic expression with

unbalanced parentheses.
3. Semantic, such as an operator applied to an

incompatible operand.
4. Logical, such as an infinitely recursive call.

Example:
Given grammar G : E → E+E | E*E | (E) | - E | id
Sentence to be derived : – (id+id)

LEFTMOST

DERIVATION

RIGHTMOST

DERIVATION
E → - E E → - E
E → - (E) E → - (E)
E → - (E+E) E → - (E+E)
E → - (id+E) E → - (E+id)
E → - (id+id) E → - (id+id)

Strings that appear in leftmost derivation are called left
sentinel forms. Strings that appear in rightmost derivation
are called right sentinel forms.

3.3 Semantic Analysis
Semantic analysis refers to the computation and
propagation of information that is not part of the context-
free syntax of the language. In a compiler, this might refer
to the type or scope of a variable. A common way of
handling such information is using “attribute grammars,”
which associate properties (“attributes”) with grammar
symbols and specify rules, called semantic rules, for
computing their values. These rules in effect specify the
flow of information between different points in the parse
tree for a program. Not surprisingly, information has to be
propagated along the parse tree for many other translation
problems as well [9,10]. An example that we discuss in
class involves displaying HTML documents in a browser.
The input in this case is an HTML document, with tags
such as and <i></i> that affect the way specific
characters are displayed, as well as the amount of space
taken by a group of characters (a boldface character is
typically wider than one that is not). The output is the
sequence of characters being displayed in the browser

window. Among the problems to be addressed is the
determination of when the line being displayed is “long
enough,” making it necessary to emit a line break character
[1, 2, 3].

Fig: 3.8 Semantic analysis

This makes it necessary to figure out how to compute and
propagate semantic information about the font in use at any
particular point in the text as well as the line length in the
display window up to that point. Compiler courses
traditionally treat optimization in terms of code
transformations that make the program run faster[6,7,8]. A
more general view is that optimization aims to reduce the
“cost” of the generated code for some cost measure of
interest.

Traditionally, the cost measure most often used has been
execution time; however, even within mainstream compiler
research, other measures of cost have recently been gaining
credence: these include code size (for limited-memory
processors, e.g., in embedded and mobile systems) and
energy usage (e.g., for battery-operated portable
computers). When we generalize to other translation
problems, it may still make sense to consider the “cost” of
a representation. As an example, the graph drawing tool dot
[1] takes a textual specification of a graph as input and
produces a pictorial representation of the graph, e.g., as a
JPEG or PostScript file, as output. Since a picture with
many edges crossing one another is harder to understand
than one with fewer edge crossings, dot tries to “optimize”
the pictorial representation it produces by changing the
layouts of vertices and edges so as to reduce the number of
edge crossings [11,12]. Conceptually, this is exactly
analogous to the optimization phase of a compiler.

3.4 Intermediate code generator

In Intermediate code generation we use syntax directed
methods to translate the source program into an
intermediate form programming language constructs such
as declarations, assignments and flow-of-control statements.

Fig: 3.9 Role of intermediate code generator

Advantages of Using an Intermediate Language
1. Build a compiler for a new machine by attaching a new

code generator to an existing front-end.
2. Reuse intermediate code optimizers in compilers for

different languages and different machines.

Special Conference Issue: National Conference on
Cloud Computing & Big Data 174

3. The terms “intermediate code”, “intermediate
language”, and “intermediate representation” are
all used interchangeably.

3.5 CODE GENERATION

The final phase in compiler model is the code generator. It
takes as input an intermediate representation of the source
program and produces as output an equivalent target
program. The code generation techniques presented below
can be used whether or not an optimizing phase occurs
before code generation.

ISSUES IN THE DESIGN OF A CODE GENERATOR

Input to code generator:
The input to the code generation consists of the
intermediate representation of the source program produced
by front end, together with information in the symbol table
to determine run-time addresses of the data objects denoted
by the names in the intermediate representation[12].

Intermediate representation can be:
a. Linear representation such as postfix notation
b. Three address representation such as quadruples
c. Virtual machine representation such as stack machine

code
d. Graphical representations such as syntax trees and

dags.

Prior to code generation, the front end must be scanned,
parsed and translated into intermediate representation along
with necessary type checking. Therefore, input to code
generation is assumed to be error-free. Target program: The
output of the code generator is the target program. The
output may be:
1. Absolute machine language - It can be placed in a

fixed memory location and can be executed
immediately. front end code optimizer code generator
symbol table

2. Reloadable machine language - It allows subprograms
to be compiled separately.

3. Assembly language - Code generation is made easier.

Fig: 3.10 an example for code generator

The following issues arise during the code generation
phase:
a. Input to code generator
b. Target program
c. Memory management

d. Instruction selection
e. Register allocation

3.6 CODE OPTIMIZATION

The code produced by the straight forward compiling
algorithms can often be made to run faster or take less
space, or both. This improvement is achieved by program
transformations that are traditionally called optimizations.
Compilers that apply code-improving transformations are
called optimizing compilers. Optimizations are classified
into two categories[13]. They are
1. Machine independent optimizations:
2. Machine dependant optimizations:

Machine independent optimizations:
Machine independent optimizations are program
transformations that improve the target code without taking
into consideration any properties of the target machine.

Machine dependant optimizations:

Machine dependant optimizations are based on register
allocation and utilization of special machine-instruction
sequences.

Example:
As the relationship t4:=4*j surely holds after such an
assignment to t4 in Fig. and t4 is not changed elsewhere in
the inner loop around B3, it follows that just after the
statement j:=j-1 the relationship t4:= 4*j-4 must hold. We
may therefore replace the assignment t4:= 4*j by t4:= t4-4.
The only problem is that t4 does not have a value when we
enter block B3 for the first time. Since we must maintain
the relationship t4=4*j on entry to the block B3, we place
an initializations of t4 at the end of the block where j itself
is initialized, shown by the dashed addition to block B1 in
second Fig.

Fig: 3.11 an example for code optimization

The replacement of a multiplication by a subtraction will
speed up the object code if multiplication takes more time
than addition or subtraction, as is the case on many
machines.

Special Conference Issue: National Conference on
Cloud Computing & Big Data 175

Fig: 4 example for phases of compiler

5. Conclusions
Compiler design courses typically focus narrowly on the
translation of high-level programming languages into low-
level assembly or machine code. Given that the majority of
computer science students are unlikely you be involved in
compiler design as a day-to-day professional activity, this
limits the relevance of such courses to the students’
eventual careers. However, it is possible to generalize the
traditional view and consider the problem of translating
from a source language to a target language, where both the
source and target languages are defined broadly, e.g., need
not even be programming languages. Such a generalized
view includes many translation problems, e.g., document
formatting or graph drawing that are not traditionally
viewed as “compiler problems.” Viewing such translation
problems in this way allows us to identify and understand
essential underlying commonalities of the translation
process.

This has several benefits, among them that the use of tools
such as lex and yacc to generate the front end of a
translator reduces development time, and that by relying on
well understood techniques and avoiding ad hoc
approaches to the lexical analysis and parsing problems,
reliability is enhanced.

Overall, therefore, students benefit from having a deeper
understanding of a variety of translation problems; being
able to apply techniques and tools developed for compilers

to other translation problems; and thereby being able to
produce better code more quickly.

References:

[1] Compilers: Principles, Techniques, and Tools
Hardcover – Import, 31 Aug 2006 by Alfred V. Aho
(Author), Monica S. Lam (Author), Ravi Sethi
(Author), Jeffrey D. Ullman (Author)

[2] Andrew W. Appel. Modern Compiler
Implementation in ML. Cambridge University Press,
Cambridge, England, 1998.

[3] E. Koutsofios and S. C. North, “Drawing graphs with
dot”, AT&T Bell Laboratories, Murray Hill, NJ,
1993.

[4] Michael Matz, Jan Hubi˘cka, Andreas Jaeger, and
Mark Mitchell. System V application binary
interface, AMD64 architecture processor
supplement. Available at http://www.x86-
64.org/documentation/abi.pdf, May 2009. Draft 0.99.

[5] L. Lamport, LaTeX: A Document Preparation
System,User’s guide and Reference Manual.
Addison-Wesley,1994.

[6] L. Maranget, “HeVeA User Documentationversion
1.06-7”, INRIA, France, May
2001.http://para.inria.fr/˜maranget/hevea/doc/index.h
tml

[7] J. S. Plank, “Jgraph – A Filter for Plotting Graphs in
PostScript”, Conference Proceedings, Usenix Winter
1993 Technical Conference, January 1993, pp. 63–
68.

[8] R. W. Quong, “Ltoh: a customizable La- TeX to
HTML converter”, April 2000.
http://www.best.com/˜quong/ltoh.

[9] Eyerman, S., Eeckhout, L., Karkhanis, T., Smith,
J.E.: A performance counter architecture for
computing accurate CPI components. In: ASPLOS.
(2006) 175–184

[10] Eyerman, S., Smith, J.E., Eeckhout, L.:
Characterizing the branch misprediction penalty. In:
ISPASS. (2006) 48–58

[11] Principles of compiler design, V. Raghavan, 2nd ed,
TMH, 2011.

[12] Principles of compiler design, 2nd ed, Nandini
Prasad, Elsevier

[13] http://www.nptel.iitm.ac.in/downloads/106108052/
[14] Compiler construction, Principles and Practice,

Kenneth C Louden, CENGAGE
[15] Implementations of Compiler, A new approach to

Compilers including the algebraic methods,
Yunlinsu, SPRINGER

