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-------------------------------------------------------------------ABSTRACT------------------------------------------------------------- 

Compiler Design is a common subject of most modern Computer Science undergraduate curriculum. However, 

compiler design has become a highly specialized topic, and it is not clear that a significant number of Computer 

Science students will find themselves designing compilers professionally. This paper is a thorough introduction to 

compiler design, focusing on more low-level and systems aspects rather than high-level questions such as 

polymorphic type inference or separate compilation. You will be building several complete end-to-end compilers for 

successively more complex languages. Designing the content of compiler design courses to emphasize this broad 

applicability can make them more relevant to students. 
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1. Introduction 

There are many examples of such translators—discussed 

later in this paper-that fall outside the traditional model of 
compilers; a lot of them don’t involve programming 
languages at all. In each of these cases, however, the 
translation process has roughly the same structure: an input 
string is decomposed into tokens; the token sequence is 
grouped into “phrases” whose structure is specified by 
(something akin to) a context-free grammar; and these 
phrases are finally mapped to the output sequence in a 
manner determined by their structure and the context in 
which they occur. Many of the issues that arise, including 
the ways in which the input can be organized into tokens 
and phrases and the ways in which such phrases can be 
represented and manipulated, are very similar across all of 
these examples. Focusing on these commonalities makes it 
possible to present many traditional compiler techniques, 
e.g., buffer management for lexical analysis, parsing 
techniques for context-free languages, and attribute 
evaluation and propagation in parse trees, in a much more 
general setting that emphasizes their relevance to a 
significantly wider range of applications. It also shows how 
compiler development tools such as lex and yacc can be 
applied for many translation problems that students do not 
typically see as compilation problems. 

 

1.1  Why Study Compilers? 

Everything that computers do is the result of some 
program, and all of the millions of programs in the world 
are written in one of the many thousands of programming 
languages that have been developed over the last 60 years. 
Designing and implementing a programming language 
turns out to be difficult; some of the best minds in 

computer science have thought about the problems 
involved and contributed beautiful and deep results [1,2]. 
Learning something about compilers will show you the 
interplay of theory and practice in computer science, 
especially how powerful general ideas combined with 
engineering insight can lead to practical solutions to very 
hard problems. Knowing how a compiler works will also 
make you a better programmer and increase your ability to 
learn new programming languages quickly. 

 

2. Compiler Design: Overview 

You will also understand some specific components of 
compiler technology, such as lexical analysis, grammars 
and parsing, type-checking, intermediate representations, 
static analysis, common optimizations, instruction selection, 
register allocation, code generation, and runtime organization. 
The knowledge gained should be broad enough that if you 
are confronted with the task of contributing to the 
implementation of a real compiler in the field, you should 
be able to do so confidently and quickly [3]. For many of 
you, this will be the first time you have to write, maintain, 
and evolve a complex piece of software. You will have to 
program for correctness, while keeping an eye on 
efficiency, both for the compiler itself and for the code it 
generates. Because you will have to rewrite the compiler 
from lab to lab, and also because you will be collaborating 
with a partner, you will have to pay close attention to issues 
of modularity and interfaces. Developing these software 
engineering and system building skills are an important 
goal of this class, although we will rarely talk about them 
explicitly. 
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Fig: 2.1 structure of a compiler [1] 

 
3. Phases of a Compiler 

The execution of a compiler conceptually consists of 
four phases:  
1. Lexical Analysis  

2. Syntax Analysis or Parsing 

3. Semantic Analysis 

4. Code Generation 

5. Code Optimization 
 
In this section discusses each such phase with regard to 
how its ideas, concepts, and techniques can be useful in 
translation problems outside the realm of traditional 
compilation. 

 
3.1 Lexical Analysis  
As the first phase of a compiler, the main task of the lexical 
analyzer is to read the input characters of the source 
program, group them into lexemes, and produce as output a 
sequence of tokens for each lexeme in the source program.  
The stream of tokens is sent to the parser for syntax 
analysis. It is common for the lexical analyzer to interact 
with the symbol table as well [4]. When the lexical 
analyzer discovers a lexeme constituting an identifier, it 
needs to enter that lexeme into the symbol table. In some 
cases, information regarding these interactions are 
suggested in Fig. 3.1. Commonly, the interaction is 
implemented by having the parser call the lexical analyzer. 
The call, suggested by the getNext Token command, causes 
the lexical analyzer to read characters from its input until it 
can identify the next lexeme and produce for it the next 
token, which it returns to the parser.            

 
Fig: 3.1 overview of lexical Analysis [5] 

Since the lexical analyzer is the part of the compiler that 
reads the source text, it may perform certain other tasks 
besides identification of lexemes. 
 
One such task is stripping out comments and whitespace 
(blank, newline, tab, and perhaps other characters that are 
used to separate tokens in the input).  
 
TOKENS, PATTERNS, AND LEXEMES: 
When discussing lexical analysis, we use three related but 
distinct terms: 
 

Token: A token is a pair consisting of a token name and an 
optional attribute value. The token name is an abstract 
symbol representing a kind of lexical unit, e.g., a particular 
keyword, or a sequence of input characters denoting an 
identifier. The token names are the input symbols that the 
parser processes. In what follows, we shall generally write 
the name of a token in boldface. We will often refer to a 
token by its token name [4, 5]. 
 
Pattern: A pattern is a description of the form that the 
lexemes of a token may take. In the case of a keyword as a 
token, the pattern is just the sequence of characters that 
form the keyword. For identifiers and some other tokens, 
the pattern is a more complex structure that is matched by 
many strings [4, 5]. 
 

Lexeme: A lexeme is a sequence of characters in the 
source program that matches the pattern for a token and is 
identified by the lexical analyzer as an instance of that 
token. 

 

Fig: 3.2 a transition diagram for id's and keywords 

 

Fig: 3.3 the transition diagram for a token number is 

given 

 If a dot is seen we have an optional fraction. 

 State 14 is entered and we look for one or more 
additional digits. 

 State 15 is used for this purpose. 

 If we see an E, we have an optional exponent, states 16 
through 19 are used to recognize the exponent value. 

 In the state 15, if we see anything other than E or digit, 
then 21 is the end of the accepting state. 
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Fig: 3.4 a transition diagram for whitespace  

is given below 

 
In the diagram we look for one or more whitespace 
characters represented by delim in the diagram –typically 
these characters would be blank, tab, newline. 

 
Use of Lex: An input file lex1 is written in the lex 
language and describes the lexical analyzer to be generated. 
The Lex compiler transforms lex1 to a c program in a file 
that is always named lex.yy.c 

 

 
Fig: 3.5 Use of Lex 

 
LEX PROGRAM FOR TOKEN: 
 

%{ 
/* definitions of manifest constants 
LT, LE, EQ, NE, GT, GE, 
IF, THEN, ELSE, ID, NUMBER, RELOP */ 
%} 
/* regular definitions */ 
delim [ \t\nl 
ws (delim)+ 
letter [A-Za-z] 
digit [o-9] 
id {letter} {(letter) | {digit})* 
number {digit)+ (\ . {digit}+)? (E [+-] ?{digit}+)? 
 
%% 
{ws} (/* no action and no return */) 
if   {return(IF) ; } 
then   {return(THEN) ; } 
else   {return(ELSE) ; } 
{id}  {yylval = (int) installID(); return(ID);} 
{number}     {yylval = (int) installNum() ;  
  return(NUMBER) ; } 
“<”  {yylval = LT; return(REL0P); } 
“<=” {yylval = LE; return(REL0P); } 
“=”  {yylval = EQ ; return(REL0P); } 
“<>” {yylval = NE; return(REL0P);} 
“>”  {yylval = GT; return(REL0P);} 
“>=” {yylval = GE; return(REL0P);} 

        %% 

int installID0 {/* function to install the lexeme, whose 
first character is pointed to by yytext, 
and whose length is yyleng, into the 
symbol table and return a pointer 
thereto */ 

 } 
 int installNum() {/* similar to installID, but puts 

numerical constants into a separate table */ 
 
} 

 
3.2  SYNTAX ANALYSIS  

Syntax analysis is the second phase of the compiler. It gets 
the input from the tokens and generates a syntax tree or 
parse tree [1]. 
 
Advantages of grammar for syntactic specification : 
1. A grammar gives a precise and easy-to-understand 

syntactic specification of a programming language. 
2. An efficient parser can be constructed automatically 

from a properly designed grammar. 
3. A grammar imparts a structure to a source program 

that is useful for its translation into object code and for 
the detection of errors. 

4. New constructs can be added to a language more easily 
when there is a grammatical description of the 
language. 
 

 

Fig: 3.6 Example for Syntax analysis 

 

THE ROLE OF PARSER 

The parser or syntactic analyzer obtains a string of tokens 
from the lexical analyzer and verifies that the string can be 
generated by the grammar for the source language. It 
reports any syntax errors in the program[7,8]. It also 
recovers from commonly occurring errors so that it can 
continue processing its input. 
 

 

Fig: 3.7 Parser 
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Functions of the parser:  

1.  It verifies the structure generated by the tokens based 
on the grammar. 

2.  It constructs the parse tree. 
3.  It reports the errors. 
4.  It performs error recovery. 
 

Issues Of parser: 

1. Variable re-declaration 
2. Variable initialization before use. 
3. Data type mismatch for an operation. 

 
The above issues are handled by Semantic Analysis phase. 
 
Syntax error handling: 
Programs can contain errors at many different levels. For 
example: 
1. Lexical, such as misspelling a keyword. 
2. Syntactic, such as an arithmetic expression with 

unbalanced parentheses. 
3. Semantic, such as an operator applied to an 

incompatible operand. 
4. Logical, such as an infinitely recursive call. 

 
Example:  
Given grammar G : E → E+E | E*E | ( E ) | - E | id 
Sentence to be derived : – (id+id) 

 
LEFTMOST 

DERIVATION 

RIGHTMOST 

DERIVATION 
E → - E E → - E 
E → - ( E )   E → - ( E ) 
E → - ( E+E ) E → - (E+E ) 
E → - ( id+E ) E → - ( E+id ) 
E → - ( id+id ) E → - ( id+id ) 

 
Strings that appear in leftmost derivation are called left 
sentinel forms. Strings that appear in rightmost derivation 
are called right sentinel forms. 
 

3.3  Semantic Analysis 
Semantic analysis refers to the computation and 
propagation of information that is not part of the context-
free syntax of the language. In a compiler, this might refer 
to the type or scope of a variable. A common way of 
handling such information is using “attribute grammars,” 
which associate properties (“attributes”) with grammar 
symbols and specify rules, called semantic rules, for 
computing their values. These rules in effect specify the 
flow of information between different points in the parse 
tree for a program. Not surprisingly, information has to be 
propagated along the parse tree for many other translation 
problems as well [9,10]. An example that we discuss in 
class involves displaying HTML documents in a browser. 
The input in this case is an HTML document, with tags 
such as <b></b> and <i></i> that affect the way specific 
characters are displayed, as well as the amount of space 
taken by a group of characters (a boldface character is 
typically wider than one that is not). The output is the 
sequence of characters being displayed in the browser 

window. Among the problems to be addressed is the 
determination of when the line being displayed is “long 
enough,” making it necessary to emit a line break character 
[1, 2, 3].  

 
Fig: 3.8 Semantic analysis 

 
This makes it necessary to figure out how to compute and 
propagate semantic information about the font in use at any 
particular point in the text as well as the line length in the 
display window up to that point. Compiler courses 
traditionally treat optimization in terms of code 
transformations that make the program run faster[6,7,8]. A 
more general view is that optimization aims to reduce the 
“cost” of the generated code for some cost measure of 
interest. 
 
Traditionally, the cost measure most often used has been 
execution time; however, even within mainstream compiler 
research, other measures of cost have recently been gaining 
credence: these include code size (for limited-memory 
processors, e.g., in embedded and mobile systems) and 
energy usage (e.g., for battery-operated portable 
computers). When we generalize to other translation 
problems, it may still make sense to consider the “cost” of 
a representation. As an example, the graph drawing tool dot 
[1] takes a textual specification of a graph as input and 
produces a pictorial representation of the graph, e.g., as a 
JPEG or PostScript file, as output. Since a picture with 
many edges crossing one another is harder to understand 
than one with fewer edge crossings, dot tries to “optimize” 
the pictorial representation it produces by changing the 
layouts of vertices and edges so as to reduce the number of 
edge crossings [11,12]. Conceptually, this is exactly 
analogous to the optimization phase of a compiler.  

 

3.4 Intermediate code generator 

In Intermediate code generation we use syntax directed 
methods to translate the source program into an 
intermediate form programming language constructs such 
as declarations, assignments and flow-of-control statements.  

Fig: 3.9 Role of intermediate code generator 

Advantages of Using an Intermediate Language 
1. Build a compiler for a new machine by attaching a new 

code generator to an existing front-end. 
2. Reuse intermediate code optimizers in compilers for 

different languages and different machines. 
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3. The terms “intermediate code”, “intermediate 
language”, and “intermediate representation” are 
all used interchangeably.  
 

3.5  CODE GENERATION 

The final phase in compiler model is the code generator. It 
takes as input an intermediate representation of the source 
program and produces as output an equivalent target 
program. The code generation techniques presented below 
can be used whether or not an optimizing phase occurs 
before code generation. 
 

ISSUES IN THE DESIGN OF A CODE GENERATOR 

Input to code generator:  
The input to the code generation consists of the 
intermediate representation of the source program produced 
by front end, together with information in the symbol table 
to determine run-time addresses of the data objects denoted 
by the names in the intermediate representation[12].  
 
Intermediate representation can be: 
a. Linear representation such as postfix notation 
b. Three address representation such as quadruples 
c. Virtual machine representation such as stack machine 

code 
d. Graphical representations such as syntax trees and 

dags. 
 
Prior to code generation, the front end must be scanned, 
parsed and translated into intermediate representation along 
with necessary type checking. Therefore, input to code 
generation is assumed to be error-free. Target program: The 
output of the code generator is the target program. The 
output may be:  
1. Absolute machine language - It can be placed in a 

fixed memory location and can be executed 
immediately. front end code optimizer code generator 
symbol table 

2. Reloadable machine language - It allows subprograms 
to be compiled separately. 

3. Assembly language - Code generation is made easier. 
 

 
Fig: 3.10 an example for code generator 

 
The following issues arise during the code generation 
phase: 
a. Input to code generator 
b. Target program 
c. Memory management 

d. Instruction selection 
e. Register allocation 

 

3.6 CODE OPTIMIZATION 

The code produced by the straight forward compiling 
algorithms can often be made to run faster or take less 
space, or both. This improvement is achieved by program 
transformations that are traditionally called optimizations. 
Compilers that apply code-improving transformations are 
called optimizing compilers.  Optimizations are classified 
into two categories[13]. They are   
1. Machine independent optimizations:  
2. Machine dependant optimizations: 
 

Machine independent optimizations: 
Machine independent optimizations are program 
transformations that improve the target code without taking 
into consideration any properties of the target machine. 
 

Machine dependant optimizations: 

Machine dependant optimizations are based on register 
allocation and utilization of special machine-instruction 
sequences. 
 

Example: 
As the relationship t4:=4*j surely holds after such an 
assignment to t4 in Fig. and t4 is not changed elsewhere in 
the inner loop around B3, it follows that just after the 
statement j:=j-1 the relationship t4:= 4*j-4 must hold. We 
may therefore replace the assignment t4:= 4*j by t4:= t4-4. 
The only problem is that t4 does not have a value when we 
enter block B3 for the first time. Since we must maintain 
the relationship t4=4*j on entry to the block B3, we place 
an initializations of t4 at the end of the block where j itself 
is initialized, shown by the dashed addition to block B1 in 
second Fig.  

 

Fig: 3.11 an example for code optimization 

The replacement of a multiplication by a subtraction will 
speed up the object code if multiplication takes more time 
than addition or subtraction, as is the case on many 
machines. 
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Fig: 4 example for phases of compiler 

 

5.  Conclusions 
Compiler design courses typically focus narrowly on the 
translation of high-level programming languages into low-
level assembly or machine code. Given that the majority of 
computer science students are unlikely you be involved in 
compiler design as a day-to-day professional activity, this 
limits the relevance of such courses to the students’ 
eventual careers. However, it is possible to generalize the 
traditional view and consider the problem of translating 
from a source language to a target language, where both the 
source and target languages are defined broadly, e.g., need 
not even be programming languages. Such a generalized 
view includes many translation problems, e.g., document 
formatting or graph drawing that are not traditionally 
viewed as “compiler problems.” Viewing such translation 
problems in this way allows us to identify and understand 
essential underlying commonalities of the translation 
process. 
 
This has several benefits, among them that the use of tools 
such as lex and yacc to generate the front end of a 
translator reduces development time, and that by relying on 
well understood techniques and avoiding ad hoc 
approaches to the lexical analysis and parsing problems, 
reliability is enhanced.  
 
Overall, therefore, students benefit from having a deeper 
understanding of a variety of translation problems; being 
able to apply techniques and tools developed for compilers 

to other translation problems; and thereby being able to 
produce better code more quickly. 
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