
Special Conference Issue: National Conference on
Cloud Computing & Big Data 135

Lossless Image Compression having Compression
Ratio Higher than JPEG

Madan Singh

madan.phdce@gmail.com,
Vishal Chaudhary

Computer Science and Engineering, Jaipur National University, Jaipur Rajasthan, India
vishalhim@yahoo.com

---ABSTRACT---

This paper focuses on improving the Image compression ratio and having 100% quality factor. The major emphasis

has been on Arithmetic Coding, its principle has been applied to get the wanted results i.e. higher compression ratio

than JPEG on an average quality factor. JPEG algorithm is context dependent it is most valuable when there is less

variation in image pixels values, but still JPEG is mostly used image compression standard.

Keywords—JPEG, Arithmetic Coding, Recursion.

--- -----------------------

I. INTRODUCTION

Images provide much easier way to interpret something
more frequently than text, in todays’ world images are
being used accessibly as a form of communication, internet
acting as main carrier. Like other things in the world it
needs space know as memory space for its existence, space
occupied by an image is known as size of image, and large
file size has following consequences: Memory Requirement
is more, Transmission speed is less, Take more time for
read & write operation. So image compression do becomes
necessary in today’s world of high speed multimedia, where
user’s convenience is more necessary along quick response
time of computer system. With time no. of image
compression schemes has been proposed but the one that
has dominated the world is JPEG. Efforts has been going on
to further improve JPEG algorithms, this paper gives an
algorithm that tends to give better result than JPEG without
having any loss in the image data.

A. Data Compression
It is the process of reducing file size either by preserving its
original information or by losing some of its original
information [2].

B. Lossless Compression
Lossless compression techniques, as their name implies,
involve no loss of information [7]. If data have been loss-
lessly compressed, the original data can be recovered
exactly from the compressed data. Lossless compression is
generally used for application that can’t tolerate any
difference between original and reconstructed data [2].

C. Lossy Compression
Lossy compression techniques involve some loss of
information, and that have been compressed using lossy
techniques generally can’t recovered exactly. Generally
higher compression ratios are achieved with this compression
rather than lossless compression. In many applications, this

lack of exact reconstruction is not a problem, Image
compression is an application of it [2].

II. TECHNIQUES

A. Arithmetic Coding
The basic fundamental behind this scheme is to generate a
unique identifier for a symbol or sequences of symbols [2].
Such unique identifier is known as tag, one possible set of
tags for representing sequences of symbols are the numbers
in the interval [0, 1). Because the number of numbers in this
interval is infinite, it should be possible to assign a unique
tag to each distinct sequence of symbols [5].

1) Generation of Tag
The given unit interval (UI) [0, 1), for generating unique
tag for each distinct sequence of symbol, the concept of
cumulative sum is used, for given n no. of symbols
(included repeated), any value is given each symbol or
sequence in such a way that cumulative sum has to be
exactly 1 and 0 value is not assigned to any one or the
simple way to assign such value is to the concept of
probability as used in case of Huffman coding [4]. Let F
(x1), F (x2), F (x3) be the values assigned to first, second
and third character of sequence (x1, x2, x3,……xn), so in
general way for n is the length of sequences of characters, F
(xi) for i = 1,2,3……..n can represent the values. Now
divide the UI in n numbers of sub intervals, each interval
have its symbol assigned, and interval of any symbol [F(i-
1), F(i)).For any character select its corresponding interval
and divide that into again n no. of sub- intervals by defining
new sub – intervals values to each symbol , these sub-
intervals values are defined for sequence (x1, x2, x3,……xn)
are defined by following formulas:

 ln = ln-1 + (un-1 – ln-1)F(xn – 1)
un = ln-1 + (un-1 – ln-1)F(xn)

Here ln minimum value of nth sub interval u n is the
maximum value that same interval. Midpoint of interval is
used as tag once last symbol of a given sequences is
processed, then tag value is given by [4]:
T (X) = (un + ln) /2

Special Conference Issue: National Conference on
Cloud Computing & Big Data 136

2) Deciphering a Tag

Decoding the tag is almost same process similar to above
encoding process. Select the first symbol find apply
encoding procedure on first interval if condition l1 <= T(x)
< u1 then decoded character is first of sequence, if the
given character is not of 1st interval then same procedure
is applied on next intervals until condition get satisfied [5].
Once a character is get decoded new ln & un are used to as
reference for rest of symbol’s decoding.

3) Transform coding
Transform coding involves rather than using input
sequences of pixel’s values, the concept of variance in input
sequence is used. This can be achieved by transforming
sample’s values into another sample type. In order to
understand transform coding, go to the concept of
derivatives. Given velocity time graph defined by v =f (t),
then derivative of v is v` = f`(t), this v` = f`(t), tells about
rate of change of velocity w.r.t parameter t. The derivative
graph gives the indication of frequency of distribution or
variability in the sample. This property is exploited for
lossy image compression. There two kinds of transforms
discrete and continuous. Discrete transform is of our
importance as pixel’s values are of discrete form. The
commonly used discrete transform is Discrete Cosine
Transform (DCT).

1. DCT
The Discrete Cosine Transform (DCT) gets its name from
the fact that rows of N * N Transform Matrix A are
obtained as a functions of cosines.

Fig.1 DCT conversion

,ݑ � = ݒ cos ݆ ߣ ݅ ߣ �2 2݅ ݑ� + 1
2� �−1

݆=0

�−1

݅=0

cos �2݆ ݒ + 1 ݂ ݅, ݆ �

= � ߣ 1 2
ߤ ݎ�݂ = 0

1 ��ℎ݁݁ݏ݅ݓݎ

DCT gives the indication of variability in the sample with
DCT co-efficient (F(i,j)). These value of DCT co-efficient
are used to get approximate value of pixels with help of
inverse DCT (IDCT) as follows:
 � ݅, ݆ = cos ݒ ߣ ݑ ߣ �2 ݑ2 ݅� + 1

2� �−1

݆ =0

�−1

݅=0

cos �݆ 2ݒ
+ ,ݑ ݂ 1 � ݒ = � ߣ 1 2

ߤ ݎ�݂ = 0

1 ��ℎ݁݁ݏ݅ݓݎ

2. JPEG

The JPEG standard is one of the most commonly used
standards for lossy image compression. The approach
recommended by JPEG is a transform coding approach
using the DCT.

The input image is first “level shifted” by 2n-1 i.e. subtract
2n-1 from each pixel value, where n is no. bits used to
represent each pixel. Thus, for 8-bit images whose pixels
take on values between 0 and 255, subtratct 128 from each
pixel so that the value of pixel varies between -128 and 127.
The image is divided in blocks of 8*8, which are then
transformed using an 8*8 forward DCT. If any dimension
of the image is not multiple of eight, the encoder replicates
the last column or row until the final size is a multiple of
eight. These additional rows or columns are removed
during the decoding process. After applying DCT, DCT
coefficients are obtained such that the lower frequency
coefficients are in the top left corner of 8*8 block have
larger value than the higher frequency components . This is
the generally the case, Except for situations in which there
is substantial activity in the image block.

 Quantisation in JPEG

The JPEG algorithm uses uniform quantisation to quantize
the various coefficients. The quantizer step size are
organized in a table called quantisation table and can be
viewed as fixed part of quantisation. Each quantized value
is represented by a label. The label corresponding to
quantized value of the transform coefficient DCTij is
obtained as

lij = floor ((DCTij / Qij)+0.5)

Qij is the quantisation value taken from the sample

quantisation table given below.

 Sample Quantisation Table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 194 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

The sample quantisation table shows that the step size
generally increases as moving from top left corner (DC
coefficient) to the higher order coefficient. Because the
quantisation error is an increasing function of step size,
more quantisation error will be introduced in higher
frequency coefficients than lower frequency coefficients.
The decision on the relative size of step sizes is based on
how errors in these coefficients will be perceived by human
visual system. Quantisation errors in the DC and lower AC
(except top left corner of 8*8 DCT coefficients block)
coefficients are more easily detectable than the quantisation
error in AC coefficients. Therefore, larger step sizes are
used for perceptually less important coefficients. All the

Special Conference Issue: National Conference on
Cloud Computing & Big Data 137

coefficients with magnitudes less than half of step size will
be set to zero. Because the step sizes at the tail end of the
scan are larger, the probability of finding a long run of
zeros increases at the end of zig-zag scan.

 Zig-Zag Scan

Fig.2 (zig zag scan)

 Decoding of 8*8 block

To obtain a reconstruction of the original block,
perform the de-quantization, which simply consists of
multiplying the labels with corresponding value in
sample quantitation table. Taking the inverse DCT
transform of quantized coefficients and adding 128,
will result in reconstructed block. In practical
reproduction is remarkably close to original. For even
more accurate reproduction, the step sizes in
quantitation table multiplied by one half and using
these values as new step sizes. This will result in a
increment in bit rate at the cost of increased quality .

B. Recursive Merging

This method is simple as used in merge sort i.e. first divide
the image into two sub matrices that are further divided into
two sub matrices until each sub matrix in of 8*8 (Leaf
node). After applying any operation on those leaf nodes,
information obtained is referred to as a record i.e.
recombined with the help backtracking principle (recursion).
The final information of image is an array of records.

 Fig.3 Decomposition of Image

Rn refers to record no. n in the array, this array is final
information of image i.e. is going to be used to reconstruct
the image. The size of this array is final size of image after
compression.

III. IMPLEMENTATION

Following are the steps of Lossless Image compression
with arithmetic coding (LICAC): Encoding
1. Divide the image into 8*8 blocks as described in II.C.
2. Covert all the pixels values into their respective binary

values of 8-bit binary code (as all the values of gray
scale image going to be covered by 8 -bit).

3. Apply arithmetic coding on all 64 * 8 (512) binary
values, total no. of different characters is two i.e. 0, 1.

4. Output of arithmetic coding is a real value, this value
and occurrence of 1 or 0 constitutes a record.

5. goto step (2) until all the remaining blocks are not
processed, it results in the formation of array of records.

6. Convert the values of records into their equivalents
binary values, here a record constitutes of bits
representing arithmetic code value and an integer value.

7. An array of records is treated as a stream of binary
values 0s & 1s.

8. Divide stream into small stream of size 512.
9. Apply arithmetic coding on the small streams, resulting

in new arithmetic codes.
10. Make a new array where each entry is made up of new

arithmetic codes and their respective occurrence of
either 0s or 1s.

11. New array is the final array i.e. going to be used while
decoding

Algorithm for LICAC: Data structure used {IMAGE a
N*M matrix, Record [an array of type struct (double,int)]}

Record LICAC (IMAGE , N , M) {
String s;
for i = 1 to n
 for j = 1 to n
S += (String)binary (IMAGE [i,j]);

/* Binary value of pixel is added to string */

int ones = count_no_1s (S);
/* counts no. of 1s in the String s & return int value */

 Zeros = 512-ones;
/* no. of occurrence of 0s.*/

Double code;
code=Arithmetic_Encoding(s,ones,zeros)
Record = {code,ones};
/* Record consists of code and int value.*/

return Record;
}

Following function uses the principle of divide and conquer
to get the final result this uses following new terms in
addition to previous ones lbr, lbc, upr, upc lower bound for
rows,cloumns and upper bound for rows and columns
respectively.

MERGE
(IMAGE,N,M,Record,lbr,lbc,upr,upc){
 static int i =1;
 p = floor((lbr + upr)/2)
 q = floor((lbc + upc)/2)
 if (N >= M && ((N/2) && M)!= 8)
 {

Special Conference Issue: National Conference on
Cloud Computing & Big Data 138

MERGE(IMAGE,N/2,M,Record,lbr,lbc,p,upc);

MERGE(IMAGE,N,M/2,Record,lbr,lbc,upr,q);
 Record [i++] = LICAC (IMAGE,N,M);
} }

Now following procedure encodes the Record structure
array. Algorithm for this procedure uses Data structures
{ Record [an array of type struct (double,int)], FinalRecord
[an array of type struct (double,int)]}.

ProcessRecord (Record , FinalRecord) {
String S,Temp;
 for i = 1 to n
 S += (String)binary (Record[i]);

 /* Binary value of Record Strructure is added to string */

 for i = 1, j = 1 to S.Length{
 Temp = smallStream(S);
 /*Binary string is divided into small stream of string of length 512*/

 i = i + 512;
 int ones = count_no_1s (s);

 /* counts no. of 1s in the String s & return int value */

 Zeros = 512-ones;
 /* no. of occurrence of 0s.*/

 Double code;
 code=Arithmetic_Encoding
 (Temp,ones,zeros)

 FinalRecord[j++] = {code,ones};
 /* Record consists of code and int values.*/

 }

}

Size of FinalRecord structure array is final size of image,
this structure is only i.e. going to be used for re-
construction of image.

Following Decoding algorithm describes this process.
1. Construct Record structure array from FinalRecord

structure array.
2. Apply recursive procedure to in order to get 8*8 blocks.
3. Use Arithmetic decoding procedure to get 8*8 image

blocks.
4. Recursive merging is used to get the original image.

Following algorithm construct Record structure array.
Algorithm for this functions uses Data structures { Record
[an array of type struct (double,int)], FinalRecord [an array
of type struct (double,int)]}.
ReconstructionRecordArray (Record ,
FinalRecord)
{
len = FinalRecord.length;
/*Length of record array */

for i = 1 to len{
 int n =1;
String s = Arithmetic_Decoding
(FinalRecord[i]);

 /*Arithmetic decoding is applied to generate the binary string encoded during

compression*/

 int count = 1;
 for j = 1 to 512{
 Record [j]=

decimal(s.substring(n,n+80));
 /* groups of 80 bits binary string here first 64 bits represent

arithmetic code value last 16 bits represent the occurrence of either 0s or 1s

that are converted to their respected decimal values, all this constitutes a

Record */

 If (count++ = 6) break;
 /* 6 Record elements a FinalRecord element /*

}

 }

}

Data structure required for this process is Heap, total no. of
entries in heap is = 2*Record.length -1, leaf nodes entries
of the heap is going to be as of record, the constructs the
internal nodes of the heaps. The root of the heap is final
Image. Heap data structure contains items of type Matrix.
Following algorithm uses following items ,Heap ,IMAGE,
Record.

Reconstruction (IMAGE,Record,Heap)
{
len = Record.length;
/*Length of record array */

int Matrix [8*8];
/* used for storing temp. 8*8 block */

for i = 1 to len {
 int n =1;
 /* used for making 8-bit group */

 String s = Arithmetic_Decoding
(Record[i]);

/*Arithmetic decoding is applied to generate the binary string encoded during

compression*/

 for j =1 to 8
 for k = 1 to 8
 Matrix

[j,k]=decimal(s.substring(n,n+8));
 /* groups of 8 bits binary string i.e. converted to decimal value */

 n += 8;
 Heap [len + i-1] = Matrix
}
i = 1; len = Heap.length;
while len != 1 {

 Heap[len/2]=Heap[len + i-1]+Heap[len
-i];
 len -= 2;}
IMAGE = Heap[1]; // final Image }

IV. RESULTS

Consider a sequence of alternative 1s ,0s constructing a
sequence of length 512, both have probability of 0.5
required for arithmetic coding. Following is the sequence of
real values is going to be generated represented in the form
of generating function.

Special Conference Issue: National Conference on
Cloud Computing & Big Data 139

 0.5 + 0.25 + 0.125 + 0.03125 + 0.015625 + 0.00078125
+ …….. + 7.458340731200207E-155

This is a GP series having r = 0.5
T512

 = a * r511 = 0.5^512 = 7.458340731200207E-155
T512 is maximum value i.e. going to be achieved during
generation of code during Arithmetic encoding, amount of
memory required for storing this value is 8 bytes. As
described earlier in section II that 2 bytes are also required
for storing the values of either 1 or 0. So total bytes
required for a 8*8 block is 10 bytes.

Following is the table for some random images, their
quality factors (QF) are processed using Adobe Photoshop.

Table1. JPEG vs LICAC

Original

Size

(KB)

JPEG

Size

(KB)

(Low

QF)

JPEG

Size

(KB)

(Medium

QF)

JPEG Size

(KB)

(Maximum

(QF)

LICAC

Size(KB)

97.5 32.9 44.2 81.4 2.54

253 46.2 69.2 145.8 6.6

601.8 101 118.6 331.3 15.68

698.9 122.5 143.9 400.5 18.3

812.3 144.3 163.2 426.6 21.2

1160 183.0 219.7 646.1 30.3

1530 250.3 290.6 868.1 39.9

2050 325.1 355.3 1000 53.4

2130 335.7 371.6 1005 55.5

3000 475.8 517.6 1024 78.13

Average 201.7 229.7 592.8 32.12

 Table2. % Performance Increased by LICAC

JPEG (QF) % Increase (100% Quality)

Low 84
Medium 86
Maximum 94.5

Fig.4 Series1 (JPEG) vs Series2 (LICAC)

Above fig. shows the results for size of file after JPEG
compression and size of files after LICAC compression.
These results are based upon random sample of sizes of
various images.

V. CONCLUSION

JPEG image compression standard gives poor result when
quality is more important as compared to LICAC. Even on
medium quality JPEG performance is 86% less than
LICAC. JPEG suffers big time when original image is less
than 200 KB. LICAC compression algorithm gives 100 %
image quality still having 84% compression performance
better than JPEG with low quality factor. As depicted by
Table1 that LICAC’s performance is 94.5% better than
JPEG still having no loss in the image quality. On the
LICAC’s performance is 84% better than JPEG considering
average case of (201.7, 229.7, 592.8) table1 with pure
quality.

VI. REFERENCES
[1] J,R, Pierce, Symbols, Signal, and Noise-The Nature

and process of communications, Harper, 1961.
[2] T,C Bell, J,G, Clearly, and I,H Witten, Text

Compression, Advanced Reference Series, Prentice
Hall, Englewood Cliffs, NJ, 1990.

[3] S, Pigeon, Huffman Coding, In K, Sayood, editor,
Lossless Compression Handbook, Pages 79-100,
Academic, 2003.

[4] A, Said, Arithmetic Coding, In K sayood, editor,
lossless Compression Handbook, pages 101-152,
Academic Press 2003. .

[5] Khalid Sayood Introduction to Data Compression,
Third edition, Elsevier, 2011.

[6] W,B, Pennebaker and J,L, Mitchell, JPEG still image

compression Standard, Van Nostrand Reinhold, 1993.
[7] D. Salomon, Data Compression: The Complete

Reference, Springer, 1998.

0

500

1000

1500

2000

2500

3000

1

1
3

2
5

3
7

4
9

6
1

7
3

8
5

9
7

1
0

9

Series1

Series2

