
Int. J. Advanced Networking and Applications 887
Volume: 02, Issue: 06, Pages: 887-899 (2011)

Internal Behavioral Modeling of Embedded
Systems through State Box Structures

Prof. V. Chandra Prakash

Department of Information Technology, K L University, Vaddeswaram, Guntur district 522502
Email: vchandrap@rediffmail.com

Dr. Sastry JKR
Department of Information Technology, K L University, Vaddeswaram, Guntur district 522502

Email: drsatry@kluniversity.in
D. Bala Krishna Kamesh

Department of Freshmen Engineering, K L University, Vaddeswaram, Guntur district 522502
Email: kameshdbk@gmaill.com

--- ABSTRACT--
Clean Room Software Engineering (CRSE) methodology is intended for the development of high quality systems.
The methodology is centered on three structures which include Black Box (BB), State Box (SB) and Clear Box
(CB) and it assures high quality through implementation of Verification and Validation models at every stage of
development. The models, suggested earlier, are built using the Mathematics for implementing the formalism
which is needed to assure high quality. The mathematical way of implementing the formalism has been proved to
be complex, unwieldy and impracticable. The Verification and Validation methods suggested are classical and do
not support formalism which is the key element of CRSE.

In this paper, three UML models and the associated algorithms have been proposed that help developing state box
structures in more formal way and also to automate the process of generating State Box Structures. The refined
CRSE model incorporating the suggested models is also presented. The models are used to develop the internal
behavior of a Pilot Project called “Temperature Monitoring and Controlling of Nuclear Reactor System”
(TMCNRS) which is an embedded system designed in more formal and automated way.

Key words: Embedded Systems, Sate Box, Clean Room Software Engineering, Verification and Validation, UML
models
--

Date of Submission: 20 March 2011 Date of Acceptance: 02 May 2011
--
1. Introduction

Clean Room Software Engineering (CRSE)
methodology is basically aimed at developing high
quality systems through implementation of formalism and
continuous verification and validation models
implemented at every stage of the development. Formal
methods which are mathematical oriented have been
suggested to represent all the phases existing in the
development flow of the methodology. CRSE
methodology involves two parallel flows, while in one
flow the design is undertaken and the other flow deals
with undertaking the testing of the code developed
through Design Flow. Fig 1.1 shows the CRSE
methodology.

Embedded systems (ES) must be high quality and fault
tolerant systems and are built around the internal and
external behavior modeling as they are basically stimulus-
response models. Many features of CRSE match with the
development requirements of the embedded systems.

However, some changes are needed in the CRSE
methodology so that the methodology can be
conveniently applied for the development of the
embedded systems.

Sastry, Chandra Praksh et al. [1] [2] [3] [4] have
recommended the improvement of CRSE model for
formalizing the development of the External behavior of
the embedded system. The refined CRSE model
recommended by them is shown in the Fig. 1.2

Fig 1.1 Original CRSE Model

Int. J. Advanced Networking and Applications 888
Volume: 02, Issue: 06, Pages: 887-899 (2011)

The authors further moved on to inventing the formal
models, algorithms and the processes for formalizing the
development of the internal behavioral models through
state box structures.
.

Fig 1.2 Refined CRSE for formalizing the External

behavior of the embedded system

2.0 Related work

Harlan D. Mills [5] has recommended constructing the
state boxes with the help of Data abstractions that occur
in-between the previous stimuli to respond to the effects
of the current stimulus. Every data abstraction is regarded
as a state and provides for responses when current
stimulus happens.

Michel Deck et al. [6] have stated that the state box is the
first step of implementing the data specification of black
box. In the state box, different aspects of implementation
of concrete data structures are considered which include
state data and process specification that operates on the
data. The abstract models, thus, are restated in terms of
the state data. The state data objects are instances of black
box data specifications. The state model exists in real
programming sense and the state data have initial values.
Michel Deck et al. have recommended that the state boxes
be derived directly from the black boxes by way of
implementing abstract data models. Thus, a hierarchy of
the black box to a state box is derived and this hierarchy
is generally called as Usage hierarchy since the
relationship between BB and SB is determined by usage
of one specification by another. The hierarchy also
defines a dependency relationship. When a change is
made at implementation level, a review at the higher level
(BB) must also be undertaken.

Louis Gomes et al. [7] have proposed a method for
deriving the State Charts from use cases. They have
considered computational requirements of reactive
embedded systems as the basis of representing the
functional requirements as a set of state boxes. The model
of computation of a reactive system must support
concurrency and sequential processing and the

computational model also must support the
communication through different interfaces between the
concurrent components that form the system. The
computational system must also support the
representation of the system as hierarchical state box
models.

The state chart diagrams, thus, are hierarchically
decomposed. The issue of implementation of the state
charts lies in the decision of choosing a state chart
diagram or the state space of the diagram. The state
diagram may be used to implement tasks meant for
specifications, simulation and verification where as the
state space may be used to implement other non-
properties based tasks.

The implementation of the tasks involved in embedded
system development can be undertaken based on the state
space either directly or indirectly. While the direct
implementation is based on the state chart components,
indirect implementation is based on previous translation
of the start chart into state space. Two of the tools
�Statemate� and �Rhapsody� recommended by David
Harel et al. [8] can be used to directly implement the state
charts which are based on the translation of state chart
components. The direct implementation of state chart
components can be carried using the switch statements,
classes (state Chart), Class hierarchy (state chart
Hierarchy), Table (Runtime object structure) as defined in
the UML.

They have proposed a strategy to implement the state
charts using both the direct and indirect implementation.
They have proposed a balanced approach which includes
direct implementation and handling the issues related to
communication, hierarchical refinements, concurrency,
and parallelism at higher level of the state charts. Several
translation procedures are suggested that lift the issues
related to concurrency and communication to the higher
levels of the state chart hierarchy. Moreover, the
components will be identified such that the
implementation of the state charts can be achieved in
terms of hardware, software or both.

In all the methods suggested above, not much formalism
has been considered and as such the integration of the
methods proposed by them into CRSE methodology has
not been advocated.

3.0 Pilot Project – “Temperature Monitoring and

Controlling of Nuclear Reactor System”
(TMCNRS)

The block diagram at Figure 3.1 shows various

hardware components and the integration between them.

Int. J. Advanced Networking and Applications 889
Volume: 02, Issue: 06, Pages: 887-899 (2011)

A Nuclear reactor is connected with sensing devices

such as Temperature sensors, and actuating devices such
as heaters and pumps. Both the sensing and actuating
devices are connected to the embedded system
(TARGET) and the embedded system is connected to a
remote computer (HOST) through which the operator
monitors and controls the operation of the nuclear reactor.

Fig 3.1 TMCNRS Hardware Integration diagram

The temperature sensors are connected to signal

conditioners and the outputs of signal conditioners are
connected to A/D converter which communicates with
Micro Controller using I2C Communication protocol. The
output devices which include LCD, interfaces to HOST,
and Relay to actuate pumps are connected to the Micro
Controller through its output ports.

The access to the embedded system is controlled

through a password entered through the key board which
is connected to A/D converter. The application running in
the embedded system captures the key board strokes and
validates the password. The rest of the application is
invoked when the password is valid.

Different types of outputs are written on LCD such as

Help messages, Sensed temperatures, reference
temperatures, and temperature mismatches etc. The
HOST is connected to the Microcontroller using RS232C
interface. The ES application has the interface for reading
the reference temperatures and displaying the same on
LCD.

A buzzer is connected to Micro controller and the
buzzer is triggered when the difference in temperatures
read is more than a threshold level. The ES board is
provided with regulated power supply to drive the Micro
Controller and to the relays for activating the pumps.

The sensors are mounted on the water tube situated in

the mechanical setup. Flow control is achieved through
activation and deactivation of the relays that control the
Start-stop mechanism of the pumps. Heaters are used to
raise the temperature of the Tubes. The Mechanical setup
for such an arrangement is shown in the Figure 3.2.

The Embedded Application that runs within the Micro
Controller has the following tasks:

1. Read Keyboard entries
2. Validate the password
3. Read Reference Temperatures from HOST
4. Write Initialization output to LCD
5. Write Actual outputs to LCD
6. Read the sensed Temperatures
7. Compare the Temperatures
8. Actuate the buzzers
9. Set and reset the relays to control the pumps
10. Communicate with HOST to transmit the sensed

temperatures

Figure 3.2 Mechanical setup of TMCNRS

4.0 Formal Framework for designing the Internal
Behavior of the Embedded System

The framework proposed constitutes several steps of
developing models and a process flow to implement the
models to realize the state box structure.

4.1 Identification of the objects and their
relationships

The first step in the proposed framework is to identify
various objects that are involved in the entire application,
recognize the relationships among the objects and
determine the attributes and the responsibilities of each of
the objects. Figures 4.1, 4.2, 4.3 and 4.4 show the class
diagrams depicting the classes and their relationships.

4.2 Development of a Repository of the Objects

While the class diagrams are drawn, the precedence
relationships between the classes are identified and a
repository is maintained as shown in the Table 4.1

4.3 Generate the flow sequences

The flow sequences that exist in the class diagrams are
drawn using the following algorithm.

Identify the starting points of Data flow by identifying the
components that have no preceding components and
having stimulus input.

For each of the stimuli identified (Event), add a column to
the Flow Graph Matrix

Int. J. Advanced Networking and Applications 890
Volume: 02, Issue: 06, Pages: 887-899 (2011)

 {

For each of the starting components, develop a flow
Graph Matrix having rows equivalent to the
succeeding components provided no row exists for
such a component
{

The presence of the component for a column is
indicated through a special symbol inserted in the
row column cross section

The type of succeeding component is determined
(Backward flow or forward flow). If the
succeeding component is in forward flow, is
already defined and is situated prior to the current
position of the component, then the component in
the forward flow is relocated to be the next
component in position.

If the succeeding component is in backward flow
and is already defined and is situated prior to the
current position of the component, then a
replication of the component in the backward flow
is created to be the next component in position

Generally, the replication of the components
occurs when the same component serves both
inputting and outputting process.

When the flow count of the succeeding
component is more than 1, more number of
columns are created by way of copying of the
current flow and then tracing the flow further
from there.

 }

All the components are numbered in the order of the flow
by using a 4 digit code where the first two digits indicate
the position of the component and the next two digits
indicate the component code. Appearance of component
code at a position which has been already referred in the
previous position indicates the reverse flow.

}

Each of the columns in the Flow Graph Matrix indicates a
sequence flow with the object structure responsible for
realizing a use case. A sample Flow Graph Matrix is
shown in the Table 4.2

Fig 4.5 Sequence Flow for the Event �Push Reset button�

4.4 Draw the Sequence Flow Diagrams

The sequence flow diagrams are drawn using the Flow
Graph Matrix. Some of the Sequences drawn are shown in
the Figures 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10

4.6 Processing flow for capturing keys related to entered

password

Operator : <Actor
Name>

Micro Controller :
<Actor Name>

Initialisation Process :
<Process Name>

Process LCD :
<Process Name>

LCD : <Actor Name>

Reset

Reset

Call

Initialisation Message

Key Board : <Actor
Name>

ATODConverter :
<Actor Name>

Micro Controller :
<Actor Name>

Intilisation
Process

ProcessKey ProcessLCD LCD

Key Signal

Key Data

Read Key()

process Key

Write Key

Display Key

Loop for Next Key (5)

Int. J. Advanced Networking and Applications 891
Volume: 02, Issue: 06, Pages: 887-899 (2011)

4.7 Processing flow for validating the password

Figure 4.8 Sequence flow for processing the request
for inputting the reference Temperatures

Figure 4.9 Sequence Flow for reading Reference

Temperature -1

4.5 Generate State Diagrams from Sequence Diagrams

The sequence diagrams which describe various flows that
take place across the hardware and software objects of the
embedded systems due to occurrence of external and
internal stimuli have been derived based on the flows that
are traced from the class diagrams. The sequence
diagrams provide a basis of recognizing the states of the
TMCNRS.

Fig 4.10 Sequence flow for reading Reference

Temperature-2

Initialisation
Process

Validate Password :
<Process Name>

Process LCD :
<Process Name> LCD : <Actor Name>

Call Processpswd()

Invalid Password

Write Password
Mismatch

Invalid Password

Initialisation
Process

Process LCD :
<Process Name> LCD : <Actor Name>

Request Message reference temparatuers

Requestng for inputting
Refrence Temps

Initialisation Process :
<Process Name>

Process HOST : <Process
Name>

HOST : <Actor
Name>

ProcessLCD LCD

REF-1 Request Message

REF-1 Request Message

REF-1 Data

Comm read/write Status

Initialisation Process :
<Process Name>

Process HOST : <Process
Name> HOST : <Actor

Name>

ProcessLCD LCD

Temp1Sensor :
<Actor Name>

Temp2 Sensor :
<Actor Name>

REF-2 Request Message

REF-2 Reques t Message

REF-2 Data

Read/unread status

Int. J. Advanced Networking and Applications 892
Volume: 02, Issue: 06, Pages: 887-899 (2011)

Figure 4.11 Top Level state diagrams

The following Algorithm is used for Generation of State
Diagram for modeling Internal Behavior from a set of
Sequence Diagram

1. All the major events that drive the TMCNRS are
identified with the help of Table 4.1 and Table
4.2

2. For each of the major event, develop a Top Level
State. Connect the top level states with
transitions using the actors that appear in the last
sequence of each of the event. This forms the
Top Level State diagram as shown in the figure
4.11

3. For each of the Top Level State, determine the
set of sequence flows and their order from the
Table 4.2

a. For Each of the Sequence depicted in the

Table 4.2 in the proper order

{
a. Select a current sequence flow
b. For each of the Input hardware device

in the current sequence, enter a
hardware state and develop a state
transitions sequentially

c. For each of the Output hardware
device, define two states that include

a process state followed by a
hardware state as the software drives
the hardware and connect the state
transitions sequentially

d. For the remaining flow, create a new
state for each of the object in the
sequence flow and generally name the
state with the name of the class to
which the object belongs

i. For the First state created, join

the Hardware Transition flow
ii. Join the Second State to the

First state and so on till all the
states are exhausted

iii. Join to the newly created last
state with transitions as many
times to the Hardware process
flow state, based on the
number of sequence flows
depicted in the sequence
Diagram.

iv. For every transition from the
newly created states, enter an
entry procedure qualified with
the name of class and the
method name derived from the
class in the order in which they
are defined in the class. A call
to Hardware process method
qualified with the name of the
class is made. The order in
which the entry procedures are
included in the state must be
same as the order of the
methods defined in the class

e. If the current sequence flow

has a previous sequence flow,
then a transition between the
previously created state and
currently created state will be
maintained.

}

The top level state diagrams generated using the above
mentioned algorithm is shown in the Figure 4.11. Each
state in the top level State diagram is exploded into
further state diagrams based in the composition of
elementary level of the states undertaken. The exploded
state diagram for the top level state �Initialization� is
shown in the Figure 4.12.

The State repositories maps the sequence flows. Two state
repositories representing the sequence flows at Fig 4.5
and Fig 4.6 are shown in the Tables 4.3 and 4.4. When a
system enters into a state, some procedures are executed.
The procedure execution links the states when the
transitions take place. The repository clearly helps in
generating the code.

Initialisation and
Main Control

Temp-1 Process Temp-2 Process

Compare Temp1 and
Temp2 Process

Reset

micro
Controller

Int. J. Advanced Networking and Applications 893
Volume: 02, Issue: 06, Pages: 887-899 (2011)

Name of
the Object

Type of
the
Object

Name of
the State

Entry Procedures

Operator Human Operator -
Micro
Controller

HW Micro
cont

-

Initializati
on Process

SW InitMess
ages

InitialisationProces
s. initMessages()
{
ProcessLCD.
Command_Write()
ProcessLCD.
Data_write ()
}

InitialisationProces
s.
displaypasswdMes
saage()
{
ProcessLCD.
Command_Write()
ProcessLCD.
Data_write ()
}

Process
LCD

SW LCD
Process

ProcessLCD.
Command_Write()
ProcessLCD.
Data_write ()

LCD HW LCD -

Table 4.3 State Repository for the Sequence: Display Init

Messages based on the reset button

Name of the
Object

Type
of
the
Obje
ct

Name of the
State

Entry
Procedures

Key Board HW Keybaord -
ATODConvert
er

HW ATODConv
erter

Micro
Controller

HW Micro
Controller

-

InitilisationPro
cess

SW ProcessKey ProcessKey.
Readkey ()

Process LCD SW LCD Process ProcessLCD
.
command_
write ()
ProcessLCD
. data_write
()

LCD HW LCD -

Table 4.4 State Repository for Sequence: Read password
through Key strokes

4.6 Develop the Hierarchical State Box structures

The Hierarchy existing in the state charts and sub state
charts can be used to present the same as hierarchical state
box structures.

5.0 The modified Clean Room Software

Engineering Methodology for formalizing
internal behavior of embedded systems

Based on the framework proposed in section 4.0 the
CRSE methodology has been further refined and the same
is placed in the Figure 4.11

Fig 4.11 The Refined CRSE model due to formalism for
modeling the internal behavior of the embedded
systems

6.0 Conclusions

There is a necessity that formalism be introduced in
CRSE methodology and redefine the same so that the
refined methodology can be conveniently be applied for
the development of embedded systems.

The paper has provided a flow and three models based on
UML artifacts for formalizing the internal behavior
modeling of the embedded systems.

References

[1]. Dr Sastry JKR, Prof. V. Chandra Prakash et al., �A

Formal Framework for verification and validation of
external behavioral models of embedded systems
represented through black box structures�,
Proceedings of IEEE sponsored 2nd International
Advance Computing Conference (IACC), Feb 2010.

Int. J. Advanced Networking and Applications 894
Volume: 02, Issue: 06, Pages: 887-899 (2011)

[2] Prof. V. Chandra Prakash, Dr Sastry JKR et al., �A

formal framework for presenting requirements
specifications of an embedded systems as a Black
box structure�, Proceedings of International Joint
Conference on Information and Communication
Technology (IJCICT-2010) January, 2010

[3] Dr Sastry JKR, Prof. V. Chandra Prakash et al., �A
formal Framework for Modeling External Behavior
of an embedded system as a Black Box structure�,
Proceedings of IEEE sponsored 4th International
Conference on "Embedded and Multimedia
Computing", EM-Com 2009 Dec 2009.

[4] Dr Sastry JKR, Prof. V. Chandra Prakash et al., �A
formal Framework for Verification and Validation of
External Behavior models of embedded systems
through Use Case Models�, IEEE sponsored 4th
International Conference on "Embedded and
Multimedia Computing", EM-Com 2009 Dec 2009.

[5] Harlan D. Mills, �Stepwise Refinement and
Verification in Box-Structured Systems�, Journal
IEEE Computer, Jun-88, Volume 21 Issue 6, Page
23-36

[6] Michael Deck, �Data Abstraction in the Box structures
Approach�, 3rd International conference on Cleanroom
Software Engineering practices, Oct 10-11, 1996,
college park, MD

[7] Louis Gomes and Aniko Costa, �From Use Cases to
System Implementation: State chart based Co-
design�, Proceedings of the First ACM and IEEE
International Conference on Formal Methods and
Models for Co-Design (MEMOCODE�03) 2003.

[8] D. Harel and E. Gerry, �Executable Object Modeling
with State charts�, Computer, pages 31�42, July
1997.

Authors Biography

Dr JKR Sastry is presently working as Professor of
Computer Science and Engineering at K L University,
Vaddeswaram and has 35 years of experience in the field
of Information Technology. Has served the IT industry
for 29 years worldwide and has been serving the
Educational Institutes for the last 6 years. Has published
45 papers in the fields of Embedded Systems, Data
warehousing, Data Mining, Software Engineering and
Wireless Communication in the International Journals and
Conferences. Has been the reviewer for several IEEE
sponsored International and National Conferences. Has
Chaired 2 International Conferences. Has directed 4 Ph.D.
programs and has been directing 8 Ph.D. programs
concurrently.

Prof. V. Chandra Prakash is presently working in the
department of Computer Science and Engineering at K L
University, Vaddeswaram and has 35 years of experience
spanning across the Industry and Educational institutes.
He has so far published 13 papers in the International
Journals and Conferences in the field of Software
Engineering and Embedded systems.

Mr. D. Balakrishna Kamesh is presently working in the
department of Freshmen Engineering at K L University,
Vaddeswaram and has 8 years of experience spanning
across the Industry and Educational institutes. He has so
far published 3 papers in the International Conferences in
the field of Software Engineering and Embedded systems.

Int. J. Advanced Networking and Applications 895
Volume: 02, Issue: 06, Pages: 887-899 (2011)

Figure 4.1 Class diagram for Initialization Setup

Fig 4.2 Class Diagram for processing Temperature-1

Reset-ST11/RS23

INT-ST7 INT-ST8

ST2-ST6

RestButton
Char Component Type = H

HOST

int latency
char component type = H

Process-Type = H

Send Ref1()
Send Ref2()

Read MAC Code()
readPIN()

(f rom Business Use-C...)

ST7

ST8

KeyBoard
Char Component Type = H
int latency

 MicroController
Char Component type = H
Int Latency

LCD
Char Component Type = H
int latency

ProcessHOST
int latency
char component type = S
Process-Type=H

send temp1()
send temp2()
Read Ref1()
Read Ref2()
sendrequest()

<<process>>

RS10
RS11

ValidatePassword
Char Component Type = S

process LCD()

<<process>>

ATODConverter
Int Latency
Char Component Type = H

InitializationProcess
Char Component Type = P

Process LCD1()/Process LCD()
Process Key/Process Key()
Process Message()
Validate PAssword/Validate Password()
Process HOST/Communication with HOST()
schedule tasks()
startos()
create stacks()

<<process>>

Invalid password

ProcessLcd
int latency
char component type = S
Process-Type=H : Byte

busy check LCD()
Initialise LCD()
write LCD()

<<process>>

RS1, RS2, RS3-RS7, RS8, RS9

ProcessKey
char Component Type = S
Process-Type=H
low Count = 5

Read Key1()
Read Key2()
Read Key3()
Read Key4()
Read Key5()

<<process>>

Tsensor1

Pump1
Char Component Type = H
int latency

TemperatureSensor1
Char Componet Type = H
Int Lattency

ST9

LCD
Char Component Type = H
int latency

HOST

int latency
char component type = H

Process-Type = H

(f rom Business Use-C...)

Relay1
Char Component Type = H
int latency

OpertionalAmplifier1
Char Component Type = H
Int latency

ProcessLcd
int latency
char component type = S
Process-Type=H : Byte

busy check LCD()
Initialise LCD()
write LCD()

<<process>>

RS22

ProcessHOST
int latency
char component type = S
Process-Type=H

send temp1()
send temp2()
Read Ref1()
Read Ref2()
sendrequest()

<<process>>

RS14

 MicroController
Char Component type = H
Int Latency

CompareTemp1Task
int latency
char component Type = S

assert relay1/Relay1()
deassert relay1/Relay2()

<<process>> RS18

RS19

ATODConverter
Int Latency
Char Component Type = ...

Temp1Task
char Component Type = S
Int Priority = 100
Int latency

read Temp1()
...

<<process>>

Int. J. Advanced Networking and Applications 896
Volume: 02, Issue: 06, Pages: 887-899 (2011)

Fig 4.3 Class Diagram for processing Temperature-2

Fig 4.4 Class Diagram for processing Temperature Thresholds

ST12/RS24

Pump2
int latency
char Component Type = H

TemparatureSensor2
Char Component Type = H
Int Latency

ST10

LCD
Char Component Type = H
int latency

HOST

Send Ref1()
Send Ref2()

Read MAC Code()
readPIN()

(f rom Business Use-C...)

Relay2
Char component type = H
int latency

OperationalAmplifier2
Char Component Type = H
Int Latency

ProcessHOST
int latency
char component type = S
Process-Type=H

send temp1()
send temp2()
Read Ref1()
Read Ref2()
sendrequest()

<<process>>

RS15

ProcessLcd
int latency
char component type = S
Process-Type=H : Byte

busy check LCD()
Initialise LCD()
write LCD()

<<process>>

RS22

 MicroController
Char Component type = H
Int Latency

CompareTemp2Task
int latency
char componet type = s

assert relay2/Relay2()
de assert relay2/Relay2()

<<process>>

RS21

RS20

ATODConverter
Int Latency
Char Component Type = H

Temp2Task
char component type = S
int priority = 200
int latency

read temp2()
Process LCD/Process LCD()
Compare with Ref 2()
...

<<process>>

Tsensor1

TemparatureSensor2
Char Component Type = H
Int Latency

ST10

OperationalAmplifier2
Char Component Type = H
Int Latency

ProcessLcd
int latency
char component type = S
Process-Type=H : Byte

busy check LCD()
Initialise LCD()
write LCD()

<<process>>

LCD
Char Component Type = H
int latency

RS22

ATODConverter
Int Latency
Char Component Type = H

Temp2Task
char component type = S
int priority = 200
int latency

read temp2()
Process LCD/Process LCD()
...

<<process>>

ProcessTemp1Temp2Task
int priority = 200
char component type = S
int latency

Compare temp1 and temp2()
Process Buzzer/Buzzer()
Process LCD/process LCD()

<<process>>

 MicroController
Char Component type = H
Int Latency

ST12/RS24

Reset-ST11/RS23

Buzzer
char Component Type = H
int latency

ProcessBuzzer
int latency
char component type = S

set buzzer()
unset buzzer()

<<process>>

RS23

RS24

Int. J. Advanced Networking and Applications 897
Volume: 02, Issue: 06, Pages: 887-899 (2011)

Figure 4.12 Sub-Level State diagrams for the Top Level State Initialization and Main Control

Serial
Number of
Component

Name of the Process
Component

Type of Process
Component
(H- hardware,
 S-Software)

Preceding components

1 ResetButton H
2 MicroController H ResetButton

ATOD Converter
HOST

3 HOST H ProcessHOST

4 LCD H ProcessLCD
MicroController

5 ATODConverter H Process Key
Temp1Task
Temp2Task
KeyBoard
OperationalAmplifier1
OperationalAmplifier2

6 KeyBoard H
7 Temp1Sensor H
8 Temp2Sensor H
9 OperationalAmplifier

1
H Temp1Sensor

10 OperationalAmplifier
2

H Temp2Sensor

11 Buzzer H ProcessBuzzer
MicroController

12 Pump1 H Relay1

Init
Messages

Process
Key

Validate
Password

Read
Reference1

Process
Host

LCD Process

LCD

HOST

Invalid Passwd Mesg

M1
M2

key value

KeyBaord

Reset Micro
Controlle

ATODConverter

Init
reference

Read
Reference 2

Reference1 data

Refeence 2 Data

Int. J. Advanced Networking and Applications 898
Volume: 02, Issue: 06, Pages: 887-899 (2011)

13 Pump2 H Relay2
14 Relay1 H CompareTemp1Task

MicroController
15 Relay2 H CompareTemp2Task

MicroController
16 ProcessKey S InitializationProcess
17 ValidatePassword S InitializationProcess
18 ProcessLCD S InitializationProcess

ValidatePassword
Temp1Task
Temp2Task
ProcessHOST
ProcessTemp1Temp2Task

19 InitializationProcess S MicroController
20 ProcessHOST S Initialization Process

Temp1Task
Temp2Task
HOST

21 Temp1Task S MicroController
ATODConverter

22 Temp2Task S Micro Controller
ATODConverter

23 CompareTemp1Task S Temp1Task
24 CompareTemp2Task S Temp2Task
25 ProcessTemp1Temp2

Task
S MicroController

 MicroController
26 Process Buzzer S ProcessTemp1Temp2Task

Table 4.1 Relationships between the Objects shown in the class diagrams

Int. J. Advanced Networking and Applications 899
Volume: 02, Issue: 06, Pages: 887-899 (2011)

Serial
Number of
Component

Name of the Component Type of component
(H- hardware,
S-Software)

Reset Event

Push Reset
Button
ST1

Press Key1 to
Key5

Validate
Password

Request for
Inputting
Ref Temps

Read Ref
Temp-1

Read Ref
Temp-2

0101 ResetButton H √
0102 Wait1
0202 KeyBoard H √
0303 Temp1Sensor H
0404 Temp2Sensor H
0505 OperationalAmplifier1 H
0606 OperationalAmplifier2 H

0707 ATODConverter H √
0808 HOST H √ √
0909 ProcessHOST S √ √
1010 MicroController H √ √
1111 InitializationProcess S √ √ √ √ √ √
1212 ValidateProcess S √
1313 ProcessKey S √
1414 Temp1Task S
1515 Temp2Task S
1616 CompareTemp1Task S
1717 CompareTemp2Task S
1818 ProcessTemp1Temp2Task S
1919 ProcessLCD S √ √ √ √ √ √
2020 LCD H √ √ √ √ √ √
2112 ValidationProcess S √
2211 InitializationProcess S √
2309 ProcessHOST S
2408 HOST H
2525 ProcessBuzzer S
2626 Buzzer H
2727 Relay1 H
2828 Pump1 H
2929 Relay2 H
3030 Pump2 H

Table 4.2 Sample of Generated Sequence Flow

