
Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2520

Fuzzy System Model for Management of

Driver Distractions in Motor Vehicles
Adnan Shaout and Dominic Colella

The Electrical and Computer Engineering Department
The College of Engineering and Computer Science

The University of Michigan - Dearborn
Dearborn, MI

shaout@umich.edu; dcolella@umich.edu
---ABSTRACT---

In this paper a low cost and driver’s environment friendly design of a Fuzzy Logic software system to manage

driver distractions in a motor vehicle is presented. The system uses four inputs; vehicle speed, radio volume

setting, frequency of left or right hand turns per minute and brightness conditions external to the vehicle. The

system provides a single output in the form of a Driver Attention Load rating. This rating is used as a parameter

to determine the degree to which the driver’s environment needs to be adjusted in terms of radio volume level,
brightness of instrument cluster display and reducing the amount of connected phone interruptions per minute.

The Fuzzy Inference Software System is modeled and simulated using MATLAB. After simulation, the final

system and associated graphical user interface are designed as a standalone application written in Java. An open

source Java library called jFuzzyLogic is used to model the Fuzzy Inference System and the Java Swing toolkit is

used for the design of the graphical user interface.

Keywords: Driver Attention Load Rating; Driver Distractions; Fuzzy Inference System; Java Swing; jFuzzyLogic;

MATLAB

Date of Submission: March 18, 2015 Date of Acceptance: May 13, 2015

1. INTRODUCTION

The concept of “distracted driving” may seem to have
emerged relatively recently with the onset of mobile
technologies, but distracted drivers have been a danger to
others since the mass production of the automobile. Many
factors impact a driver’s ability to maintain concentration
while operating a vehicle such as radio volume, cellular
phone use, vehicle speed, or daylight brightness
conditions. Recent studies have shown that individuals
operating motor vehicles require a similar level of
concentration when compared with other activities such as
airline pilots or surgeons operating on patients [7, 11].
Despite staggering findings such as these, the number of
motor vehicle accidents in the united states continues to
grow with each passing year. As of 2012, 421,000
individuals were injured in vehicle accidents involving
distracted drivers, an increase of nine percent from the
previous year [6]. The proposed system in this paper will
be designed to reduce the amount of distractions on drivers
as their driving situation changes to require further
attention.

1.1 OBJECTIVE

Driver monitoring systems have been engineered by
automobile OEMs since the early 21st century. Toyota has
had a system in production since 2006 that monitors eye
movements with cameras and directs the driver’s attention
to the windshield when it determines their attention has
lapsed [5]. Many other OEMs have systems similar to
these but they are problematic for two reasons. Frist, these
systems are typically only found in luxury brands of
vehicles and, even in these cases, they are optional content

requiring $1000s in extra costs. Second, these systems
only monitor the driver’s attention to the windshield but do
nothing to modify the state of the vehicle’s environment
that they are operating in. Shaout and Tonshal [12]
presented a Driver Activity Index (DAI) using fuzzy logic
to measure how busy the driver is. They used two key
driving parameters to determine the driver activity index;
Acceleration Pedal (ACC Pedal) and steering wheel angle
measure.

1.2 PROPOSED SOLUTION

This paper will present a fuzzy system that consumes
data from the vehicle’s infotainment, powertrain, and
steering systems to assess a factor labeled as the Driver’s
Attention Load. The Driver Attention Load will be used as
a modifier to directly adjust other factors within the
vehicle environment that impact the ability of the driver to
maintain concentration. Two problems this system will
attempt to solve are the issues with common OEM driver
management systems that are currently in production: cost
and impacting the driver’s environment. Low cost will be
achieved by designing a system that can be implemented
as a background software process within an existing
vehicle ECU such as the vehicle’s instrument cluster or
body controller. The use of existing hardware on the
automobile for measuring the driver attention load will
reduce the high hardware cost required in other driver
monitoring systems where cameras and/or sensors are
required. The system will also reduce the amount of
distractions on the driver as opposed to just forcing the
driver’s attention back to the task of vehicle operation as in
current production OEM systems. This paper will cover
the fuzzy inference system design, modeling of the system

mailto:shaout@umich.edu
mailto:dcolella@umich.edu

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2521

for proof of concept in MATLAB, and implementation in a
portable and efficient programming language such as Java
that can be easily implemented on commonly used
automotive microcontrollers. The paper is organized as
follows: section 2 presents the fuzzy system design,
section 3 introduces the Matlab system simulation, section
4 presents the Java application design, section 5 presents
the comparison between the fuzzy system and non-fuzzy
system (classical) and section 6 presents concluding
remarks.

2. FUZZY SYSTEM DESIGN

The Fuzzy System proposed in the project will be
designed using a five step process: define system I/O,
define crisp to fuzzy relations of I/O, create the fuzzy rule
base, define fuzzy inference technique, and define method
to generate crisp output from fuzzy output of system.

2.1 DESIGN OF SYSTEM I/O

The main goal of this proposed system is to adjust the
vehicle environment to ensure that the driver can devote
the highest level of attention to driving the vehicle by
reducing distractions. The proposal is to reduce the
driver’s distractions in relation to the amount of
concentration required to operate the vehicle under certain
conditions. Four inputs are defined that, when increased,
would require more of the driver’s attention:

 Vehicle speed

 Frequency of turns

 Radio volume

 Sunlight conditions

Vehicle speed was chosen due to a 2009 National
Highway Traffic Safety Administration (NHTSA) study
that stated that speeding was noted as a critical
contributing factor in 99% of fatal vehicle accidents [1].
Frequency of turns was chosen due to a 2009 NHTSA
study that found that 36% of vehicle collisions involved
vehicles that had recently made turns at intersections [9].
Radio volume was chosen due to a 2000 study that found
that higher volume levels negatively impacted a driver’s
reaction times [10]. Sunlight conditions were chosen due
to a 2009 National Safety Council study that found that
vehicle collisions were 300% more likely to occur during
nighttime or low light conditions when compared to
daylight conditions [4]. These four pieces of data were
also chosen due to the fact that common motor vehicle
electrical systems already contained monitoring equipment
to capture the information. This reduces cost of
implementing a system like this by not requiring any
special sensor hardware for data collection. Powertrain
systems will already be able to provide vehicle speed, most
modern suspension system controllers already capture
turning rates for power steering systems, modern
automatic climate control systems consume sunlight
conditions for thermostat control, and the vehicle’s
infotainment system can easily provide the current radio
volume level. All of this information can be transmitted
via serial data networks like CAN or FlexRay to a
centralized control that implements the fuzzy system,

easily implemented in existing vehicle modules such as
instrument clusters or body controllers.

Volume input data is specified on a scale between 0
and 63 steps based on a common number of volume steps
found in many vehicle infotainment systems. The volume
input is the actual customer set volume step, not the actual
power level of the radio’s amplifier output. Frequency of
turn data is specified in turns per minute between, 0 and 5,
in which a vehicle makes a maneuver requiring more than
a 45 degree left or right adjustment from center to the
vehicle’s heading position. Vehicle speed input data is
specified in miles per hour between 0 and 100. Sunlight is
specified by readings from the vehicle’s sun load sensor,
measure in units called Lux, on a scale from 0 to 10,000 lx
where 0 is a dark, moonless night and 10,000 is a bright,
sunny day [8].

The output variable of our fuzzy system is a parameter
labeled as the Driver Attention Load (DAL). The DAL is
specified as a parameter between 0 and 100% that defines
that amount of concentration required by the driver to
correctly operate the motor vehicle. The DAL is used as a
multiplier to adjust three factors that impact a driver’s
ability to concentrate: radio volume, cellular phone
interruptions, and brightness of vehicle information
displays. The DAL will impact radio volume by
modifying an attenuation level that will be applied to the
amplifier’s output level, this will be a volume level
adjustment measured in decibels between 0 and -10 dB and
will cause the radio volume to be slightly lowered as
vehicle conditions require increasingly more of the driver’s
attention. The DAL will impact cellular phone
interruptions by defining a maximum number of allowed
interruptions to the driver by a factor between 0 and 5
interruptions per minute. As the vehicle conditions require
more concentration, the amount of cellular phone
interruptions allowed will be decreased until, when
optimal concentration is required, all calls, SMS messages,
or notifications will not be provided to the driver. The
brightness conditions of information displays is affected by
slightly lowing the brightness of all non-vehicle critical
information on displays until only the speedometer is
visible. Figure 1 shows the proposed system block
diagram.

Figure 1: Fuzzy System I/O

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2522

2.2. DEFINE MEMBERSHIP FUNCTIONS

The membership functions are defined based on
intuition using existing knowledge gained from research
for this project. For the radio volume input, three
linguistic variables are defined:

 Low

 Medium

 High
Membership functions for radio volume linguistic
variables are defined in figure 2.

For the frequency of turns input, there are two linguistic
variables defined:

 High

 Low
The membership functions for frequency of turns are
defined in figure 3.

For the sunlight input, there are two linguistic variables
defined:

 Dark

 Light

The membership functions for sunlight conditions are
defined in figure 4.
For the Vehicle Speed input, there are three linguistic
variables defined:

 Dark

 Light
The membership functions for Vehicle Speed are defined
in figure 5.
For the Driver Attention Load output, there are five

linguistic variables defined in figure 6.

 Low

 Medium Low

 Medium

 Medium High

 High

2.3. DEFINE RULE BASE

For the design of the system’s rule base, a set of fuzzy
mapping rules will be created based on knowledge inferred
from research on this project. The rule base will be
composed of conditional rules that will map the linguistic
input variables of the rule antecedents to the output
variables of the rule’s consequents. Our rules will use the
Mamdani form of:

Where A represents our fuzzy antecedents and B
represents our output or consequent.

From the research the following inferences can be
made:

 Driving at high speed requires more concentration
to drive the vehicle safely.

Figure 2: Radio Volume Membership Functions

Figure 3: Frequency of Turns Membership
Functions

Figure 4: Sunlight Condition Membership
Functions

Figure 5: Vehicle Speed Membership Functions

Figure 6: Driver Attention Load Membership Functions

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2523

 A very high radio volume impacts a driver’s
ability to concentrate on driving.

 A high frequency of turns increases risk of
collisions.

 Driving under dark conditions requires more
concentration to drive safely.

Based on the inferences above, we can create a set of
rules for our fuzzy system. The number of rules required
is calculated by taking into account that there are two
inputs with three fuzzy variables and two inputs with two
fuzzy variables. From this we can see that there are 36
unique combinations of inputs since: 2 x 3 x 2 x 3 = 36.
Table 1 depicts mappings of the linguistic variables for
each of the input combinations to the linguistic variable for
the outputs.

Table 1. Fuzzy Rule Base.

2.4. METHOD OF INFERENCE

The method of inference for a fuzzy system define the
process for combining the inputs of our rule-based system
to generate our fuzzy outputs. There are two major

inference techniques used in industry today: Mamdani and
TSK. Mamdani is the most widely used inference method
in use today but is very heavy computationally. The TSK
method is less complex but the output of the model is a
linear function of the inputs. Mamdani consists of using
If-Then rules to map linguistic input variables to output
variables and applies a weighting to each rule. For the
purposes of this proposed design, Mamdani is chosen and
a weighting of 1 will be used for each rule.

2.5. DEFUZZIFICATION METHOD

The process of converting the fuzzy output variable
into a crisp variable is known as the defuzzification
method. There are several methods that are widely used
throughout the industry today such as the Mean of
Maximum method, Centroid method, or the Height
method. While computationally intensive, the Centroid
method is chosen for the proposed design due to
proliferation in the industry and ease of use. The equation
for the Centroid method is given below:

Where C is the fuzzy output value, z is the value along the
x-axis of the output membership function, and z* is the
final, crisp output.

2.6. PROOF OF DESIGN

To prove the design, a sample scenario will be ran
through to determine what the crisp end output would be.
Consider a driver traveling at the following parameters:

 Vehicle Speed: 50

 Frequency of Turns: 3

 Volume Step: 31

 Sunload: 5000

This combination of discrete inputs relates to the four
following rules from our subsystem:
RULE 15: IF volume IS med AND sunload IS light AND
speed IS moderate AND turn_freq IS low THEN
drvr_attn_load IS medLow;
RULE 16 : IF volume IS med AND sunload IS light AND
speed IS moderate AND turn_freq IS high THEN
drvr_attn_load IS med;

RULE 21: IF volume IS med AND sunload IS dark AND
speed IS moderate AND turn_freq IS low THEN

drvr_attn_load IS med;
RULE 22 : IF volume IS med AND sunload IS dark AND
speed IS moderate AND turn_freq IS high THEN
drvr_attn_load IS medHigh;

From these four rules we can use the Mamdani
implication and aggregation equation to create our fuzzy
output:

This leads to the output membership function shown

in figure 7.

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2524

With this fuzzy output membership function the
Centroid defuzzification method can be employed using
the equation stated above:

The output value from the Centroid defuzzification
equation provides a Driver Attention Load value of 0.53.
This value will be saved for comparison to software

simulations of the system to ensure design accuracy.

3. MATLAB SIMULATION

Once the design parameters of the system are defined
then modeling/simulation can begin. Be

fore moving to the code writing stage of the project
MATLAB will be used to validate the design. The Fuzzy
Logic Toolbox within the software provides a simple point
and click GUI for development of Fuzzy Inference
Systems (FIS). Using the editor, a new Mamdani method
FIS is created. The system is given four inputs: volume,
speed, turn frequency, and sunload. The FIS is given a
single output: driver attention load. The configuration for
the FIS is based on our earlier choices of using Mamdani
inference method, max-min implication and aggregation,
and the Centroid defuzzification method as shown in
figure 8.

Once the FIS initial settings are created, the
Membership Function Editor is used to create the crisp to
fuzzy relations for the system as shown in figure 9.

Once the membership functions are completed, the Rule
Editor is used in accordance with the table of rules created
in the previous section to input all 36 fuzzy rules of the
system as shown in figure 10.

Once all 36 rules are input into the Rule Editor then
validation on the design can begin using the Rule Viewer.

The Rule Viewer allows for quick and seamless
validation of the FIS by allowing a user to adjust the four
input values and receive a crisp output, the output fuzzy
membership functions, and the rules that are currently
active based on crisp input values. Each of the four
leftmost vertical columns are the inputs of the FIS and the
rightmost column is the output as shown in figure 11. The
vertical red bars can be dragged over the range of the
particular input to test the FIS’s output. The Rule Viewer
also gives a view of the output membership function,
based on your implication and aggregation settings, at the
bottom of the right hand column.

Now that the FIS is completed in MATLAB,
validation can begin. Each of the input values from the
rule table in the previous section is tested for all 36 rules to
determine if the corresponding crisp output agrees with the

Figure 7: Output Membership Function Based
on Crisp Inputs

Figure 8: MATLAB FIS Editor

Figure 9: Membership Function Editor

Figure 10: Rule Editor in MATLAB

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2525

fuzzy linguistic output variable stated in the rules. For this
FIS, all validation proves that the design and the
implementation of the system have been done correctly.
Also, from the proof of design section previously, the four
crisp input values are testing to validate if the equations
were implemented properly.

The output Driver Attention Load value is
approximately the same as the testing value of 0.53 from
the previous section as shown in figure 12. This proves
that the design and simulation have been implemented
properly.

4. JAVA APPLICATION DESIGN

Once the system is modeled and validated in
MATLAB, the application can be implemented in a more
common programming language. The Java programming
language was chosen for several reasons: efficiency,
security, wide usage in industry, and portability. The last
attribute is one of the biggest reasons for choosing Java, it
can easily be ported to another programming language for
use in other applications. For automotive applications, this
is an attractive quality since many embedded ECUs use a
more common programming language like C/C++. Since
Java and C/C++ are very similar, one can be easily
converted to the other and thus the code written for this
project could theoretically be implemented in an
automotive application with a fairly low development cost.
The standard Java library, Java Standard Edition 8, offers
no native support for programming of Fuzzy Logic

applications but an open source Java library known as
jFuzzyLogic is available for download. Aside from the
addition of the Fuzzy Logic library, the remainder of the
code uses the standard libraries in JavaSE 8 such as the
Abstract Window Toolkit (AWT) and Swing Toolkits for
GUI design. [Java references from wikipedia]

4.1. JFUZZYLOGIC

This library was created by two graduate students,
Pablo Cingolani and Jesus Alcala-Fdez, to create a
standardized development environment in Java for fuzzy
logic applications. jFuzzyLogic defines Fuzzy Logic
Controllers (FCL) using a control language based on the
standard defined in the IEC 61131 part 7
specification[2][3]. This specification attempts to
standardize a control language for the programming of
programmable controllers implementing FCLs.
jFuzzyLogic builds the FCL based on the fuzzy control
parameters define in the “.fcl” files. “.fcl” files are written
by the programmer and use a C programming language
syntax to allow the user to define fuzzy inputs, fuzzy
outputs, membership functions, and fuzzy rule bases. The
programming of these parameters is very similar to the
process used to define the FIS parameters in MATLAB.
Using the “.fcl” syntax, the inputs, outputs, and
membership functions from the file are imported below:
FUZZIFY volume // Fuzzify input variable 'volume':

{'low', 'med' , 'high'}

 TERM low := (0, 1) (3.2, 1) (28.8,0) ;

 TERM med := (3.2, 0) (28.8,1) (35.1,1) (59.9,0);

 TERM high := (35.1, 0) (59.9, 1) (63.2, 1);

END_FUZZIFY

FUZZIFY sunload // Fuzzify input variable 'sunload': {

'dark', 'light' }

 TERM dark := (0, 1) (2500, 1) (7500,0) ;

 TERM light := (2500,0) (7500,1) (10000, 1);

END_FUZZIFY

FUZZIFY speed // Fuzzify input variable 'speed': {

'cautious', 'moderate', 'aggressive' }

 TERM cautious := (0, 1) (5, 1) (45,0) ;

 TERM moderate := (5,0) (45,1) (55, 1) (95 , 0);

 TERM aggressive := (55, 0) (95,1) (100,1);

END_FUZZIFY

FUZZIFY turn_freq // Fuzzify input variable 'turn_freq': {

'low', 'high' }

 TERM low := (0, 1) (1.25, 1) (3.75,0) ;

 TERM high := (1.25, 0) (3.75,1) (5,1);

END_FUZZIFY

DEFUZZIFY drvr_attn_load // Defuzzify output variable

'drvr_attn_load' : {'low', 'medLow', 'med', 'medHigh',

'high' }

 TERM low := (0,1) (0.15,1) (0.25,0);

 TERM medLow := (0.15,0) (0.25,1) (0.35,1) (0.45,0);

 TERM med := (0.35,0) (0.45,1) (0.55,1)(0.65,0);

 TERM medHigh := (0.55,0) (0.65,1) (0.75,1)(0.85,0);

 TERM high := (0.75,0) (0.85,1) (1,1);

 METHOD : COG;// Use 'Center Of Gravity'

defuzzification method

 DEFAULT := 0;// Default value is 0 (if no rule

activates defuzzifier)
END_DEFUZZIFY

FCL rules are defined within the “.fcl” files using
structures called “Ruleblocks”. The following section
displays a sample structure of the first four rules of this
project:
RULEBLOCK No1

 AND : MIN; // Use 'min' for 'and' (also

implicit use 'max' for 'or' to fulfill DeMorgan's Law)

 ACT : MIN; // Use 'min' activation method

Figure 11: MATLAB Rule Viewer

Figure 12: Output of Rule Viewer with Testing Inputs
from Proof of Design Equations

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2526

 ACCU : MAX; // Use 'max' accumulation method

 RULE 1 : IF volume IS low AND sunload IS light AND

speed IS cautious AND turn_freq IS low THEN drvr_attn_load

IS low;

 RULE 2 : IF volume IS low AND sunload IS light AND

speed IS cautious AND turn_freq IS high THEN drvr_attn_load

IS medLow;

 RULE 3 : IF volume IS low AND sunload IS light AND

speed IS moderate AND turn_freq IS low THEN drvr_attn_load

IS medLow;

 RULE 4 : IF volume IS low AND sunload IS light AND

speed IS moderate AND turn_freq IS high THEN drvr_attn_load

IS medLow;

END_RULEBLOCK

Once the “.fcl” file is completed, the Java code can be
written to access the FCL that has been defined. Using the
APIs defined by jFuzzyLogic, the FCL is accessed by first
creating a Fuzzy Inference System object and then loading
the newly created “.fcl" file into it. From this point, fuzzy
variables and membership functions can be accessed.
Sample code for an FCL is displayed below:
String filename = "dal.fcl"; //Load filename into
string object

FIS fis = FIS.load(filename, true); //Load ".fcl"
file into newly created FIS object

FunctionBlock fb = fis.getFunctionBlock(null);
//Create FunctionBlock object from newly created FIS
object

fb.setVariable("volume", volume); //Access variables
of FunctionBlock as defined in ".fcl" file
fb.setVariable("sunload", sunLoad); //Access
variables of FunctionBlock as defined in ".fcl" file
fb.setVariable("turn_freq", turnFreq); //Access

variables of FunctionBlock as defined in ".fcl" file
fb.setVariable("speed", speed); //Access variables of

FunctionBlock as defined in ".fcl" file

fb.evaluate(); //Evaluate Fuzzy Control System using
currently set parameters

fb.getVariable("drvr_attn_load").defuzzify(); //Get
defuzzified fuzzy output variable

Once the FCL has been designed, the GUI code can be
written using the JavaSE 8 standard libraries.[2][3]

4.2. GRAPHICAL USER INTERFACE CODE

To design the GUI for this project, standard elements
of the Java libraries were used such as the Abstract
Window Toolkit and Swing Toolkits. Four major
elements of the Java UI library are used for this project:

 JLabels – An input area for images or text that is
not editable.

 JPanels – A container for UI elements that allows
flexibility for items such as different types of text
or images.

 JSlider – A sliding menu input that allows a user
to select values between two bounded inputs.

 ImageIcon – A UI element that allows images to
be placed and positioned easily.

The UI window is designed to as a 850px x 850px
container as shown in figure 13. Within the container,
there are three JPanel objects used to divide the panel into
three areas:

 textPanel

 bottomPanel

 iconPanel
The textPanel object is a JPanel that is designed to

present the user with all the current information on the
model in a textual format. The textPanel acts as a
container to hold a total of nine JLabel objects as shown in
figure 14. JLabel objects are added to a Java project using
the following syntax example:

 JLabel myText = new JLabel("Driver Attention Load
Monitoring System");

The JLabels are divided into two sections: one section for
the input information status and one section for the output
information. As the user adjusts the inputs using the slider
bar UI elements, the input values listed on top update to
display the current crisp values. As the input values are

adjusted, the output values of “Fuzzy Output”, “Volume
Level Attenuation”, and “Phone Interruptions Allowed”
update with feedback from the Fuzzy Inference System.
This panel is the primary interface used to provide
information to the model user.

Due to adjustments to the input sliders, the Driver
Attention Load Fuzzy Output value increases and the
values of the Volume Level Attenuation and the Phone
Interruptions Allowed will slowly increase to adjust the
vehicle environment and ensure the driver can maintain
concentration. As an example, the textPanel output below
shows a dangerous driving environment with high speed,
high volume, low sunload, and high turns per minute.
Based on these inputs, the Driver Attention Load value is
at 0.83 or 83%, this correlates to a reduction in the
amplifier volume level by -8dB and a limit in the amount
of connected phone interruptions to 1 per minute as shown
in figure 15.

Figure 13: Image of the Project UI Container

Figure 14: TextPanel JPanel area

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2527

For another example, the textPanel output below shows a
cautious driving environment with low speed, low volume,
high sunload, and low turns per minute. Based on these
inputs, the Driver Attention Load value is at 0.148 or about
15%, this correlates to a reduction in the amplifier volume
level by only -1dB and an increase in the limit in the
amount of connected phone interruptions to 3 per minute

as shown in figure 16.
The bottomPanel is another JPanel container that is

used to hold four JSlider objects that act as the user inputs
for the model. The four sliders are for Volume, Sunload,
Vehicle Speed, and Turn Frequency as shown in figure 17.

JSlider objects are constructed using the following
sample syntax:

JSlider volumeSlider = new
JSlider(JSlider.HORIZONTAL,volume_MIN, volume_MAX,
volume_INIT);

Also the panel holds a button labeled as “Display Fuzzy
MF Functions” that, when pressed, will use the current

input value settings and then evaluate the state of the fuzzy
system and provide the fuzzy output value as well as plot

charts of membership functions for the inputs and outputs.
When the “Display Fuzzy MF Functions” button is
selected, the jFuzzyLogic library plots the membership
functions as displayed in figure 18.
The iconPanel is the container used to hold the ImageIcon
object. The ImagIcon is used to display a sample
Instrument Cluster image to the user. As the Driver
Attention Load fuzzy output value increases, the
instrument cluster display will slow begin to dim all non-
critical information until only the speedometer is visible to

ensure that driver attention is only given to critical
information content. As an example, the two instrument
clusters shown in figure 19 present different Driver
Attention Loads. On the left is the dimming level used
with a cautious driving environment and a Driver
Attention Load of 15%. On the right is a more dangerous
driver with a Driver Attention Load of 83%.

4.3. JAVA APPLICATION VALIDATION

Once the Java simulation of the Driver Attention Load
Fuzzy System is completed, the software can be tested
against the previously created MATLAB module using the
testing inputs that were determined in the design phase:

 Vehicle Speed: 50 mph.

 Frequency of Turns: 3 turns per minute.

 Volume Step: 31 steps.

 Sunload: 5000 lx.
The Java simulation output value of 0.53 for Driver
Attention Load matches the value determined during the
design phase and the value that was generated from the
MATLAB FIS model as shown in figure 20.

Figure 15: Fuzzy Output Values from Example

Figure 16: Fuzzy Output Values from Second
Example

Figure18: Output Membership functions that are Displayed
When n Button is Selected

Figure17: BottomPanel Displaying the Sliders and the
Button Object

Figure19: Simulated Instrument Cluster Display

Int. J. Advanced Networking and Applications
Volume: 06 Issue: 06 Pages: 2520-2528 (2015) ISSN: 0975-0290

2528

5. COMPARISON OF CLASSICAL TO FUZZY SYSTEM

Through the validation of the Fuzzy Inference System
created in this project, it is determined that a Fuzzy Logic
solution is more desirable than a Classical Logic solution.
This is because the Fuzzy Logic solution provides a
smooth and consistent transition between fuzzy subspaces.
A Fuzzy Logic system is able to provide this smooth
transition because of the standard requirement of systems
of this type: overlapping fuzzy subspaces. Overlapping
areas in the membership functions, which is critical to a
proper Fuzzy System, allow for a higher degree of
granularity in your fuzzy output values which leads to
smoother transitions. If this function was implemented
using a Classical Logical system there transitions between
different levels of Driver Attention Load values would be
too drastic. This would be undesirable in an automobile
environment where smooth transitions are valued. If the
transitions were rigid, then jumps between instrument
cluster brightness and radio volume would be very choppy
and would project an unrefined feel.

6. CONCLUSION

The Fuzzy Inference System designed and modeled for
this project leads to two major conclusions. The first
conclusion is that a driver monitoring system can be
designed completely in software with relatively low
development costs. This system would require no
hardware costs and would incorporate information that is
already provided in a vehicle environment. Using the Open
Source library jFuzzyLogic provides a specialized
software function with no further costs as well. With
these low software development and hardware costs, the
system provides an extremely low cost solution for driver
monitoring systems. The secondary conclusion is that the
Fuzzy Inference System provides a better system model
that if a classical model would have been selected since
this system provides smoother transition between fuzzy
subspaces which equates to a more desirable customer
experience.

REFERENCES

[1]. Chen, Chou-Lin; Liu, Cejun; " An Analysis of
Speeding-Related Crashes: 6. Performing
Organization Code Definitions and the Effects of
Road Environments,"; Internet: http://www-
nrd.nhtsa.dot.gov/Pubs/811090.PDF

[2]. Cingolani, Pablo, and Jesus Alcala-Fdez.
"jFuzzyLogic: a robust and flexible Fuzzy-Logic
inference system language implementation." Fuzzy

Systems (FUZZ-IEEE), 2012 IEEE International
Conference on. IEEE, 2012.

[3]. Cingolani, Pablo, and Jesús Alcalá-Fdez.
"jFuzzyLogic: a Java Library to Design Fuzzy Logic
Controllers According to the Standard for Fuzzy
Control Programming"

[4]. "Driving At Night,” Internet:
http://www.nsc.org/news_resources/Resources/Docu
ments/Driving_at_Night.pdf

[5]. "Driver Monitoring System,” Internet:
http://en.wikipedia.org/wiki/Driver_Monitoring_System

[6]. "Facts and Consequences of Distracted Driving,”
Internet: http://www.learnstuff.com/facts-and-
consequences-of-distracted-driving/

[7]. Lee, John D.; "Driving Attention: Cognitive
Engineering in Designing Attractions and
Distractions,” Frontiers of Engineering; Volume 34;
Number 4; Winter 2008.

[8]. "Lux,"; Internet: http://en.wikipedia.org/wiki/Lux
[9]. "National Motor Vehicle Crash Causation Survey

Report to Congress,” Internet: http://www-
nrd.nhtsa.dot.gov/Pubs/811059.PDF

[10]. Strick, Susan; "Music Effects on Drivers' Reaction
Times,"; Internet:
http://www.drdriving.org/misc/music_strick_report.h
tml

[11]. "What is Distracted Driving?” Internet:
http://www.distraction.gov/content/get-the-
facts/facts-and-statistics.html

[12]. Adnan Shaout and Raj Tonshal, “Real Time Driver
Activity Index Detection Using Fuzzy Logic”, The
International Journal Of Advanced Research In
Electrical, Electronics And Instrumentation
Engineering (IJAREEIE) (Volume 3, Issue 9,
September, 2014. Impact Factor Is 1.686.

Dr. Adnan Shaout is a full professor in the Electrical
and Computer Engineering Department at the University
of Michigan –Dearborn. At present, he teaches courses in
fuzzy logic and engineering applications and computer
engineering (hardware and software). His current
research is in applications of fuzzy set theory,
embedded systems, software engineering, artificial
intelligence and cloud computing. Dr. Shaout has
more than 34 years of experience in teaching and
conducting research in the electrical and computer
engineering fields at Syracuse University and the
University of Michigan -Dearborn. Dr. Shaout has
published over 170 papers in topics related to
electrical and computer engineering fields. Dr.
Shaout has obtained his B.Sc., M .S. and Ph.D. in
Computer Engineering from Syracuse University,
Syracuse, NY, USA, in 1982, 1983, 1987, respectively.

Dominic Colella is a graduate student in the College of
Engineering and Computer Science at the University of
Michigan –Dearborn.

Figure 20: Validation Results from Java Simulation

http://www-nrd.nhtsa.dot.gov/Pubs/811090.PDF
http://www-nrd.nhtsa.dot.gov/Pubs/811090.PDF
http://www.distraction.gov/content/get-the-facts/facts-and-statistics.html
http://www.distraction.gov/content/get-the-facts/facts-and-statistics.html

	1. Introduction
	1.1 Objective
	1.2 Proposed Solution

	2. Fuzzy System Design
	1.
	2.1 Design of System I/O
	1.
	2.
	2.1.
	2.2. Define Membership Functions
	2.3. Define Rule Base
	2.4. Method of Inference
	2.5. Defuzzification Method
	2.6. Proof of Design

	3. MATLAB Simulation
	4. Java Application Design
	3.
	4.
	4.1. jFuzzyLogic
	4.2. Graphical User Interface Code
	4.3. Java Application Validation

	5. Comparison of Classical to Fuzzy System
	6. Conclusion
	References

