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------------------------------------------------------------------------------ABSTRACT---------------------------------------------------------------------- 
This paper describes a novel video coding scheme based on a three-dimensional Matching Pursuit algorithm. In addition to 
good compression performance at low bit rate, the proposed coder allows for flexible spatial, temporal and rate scalability 
thanks to its progressive coding structure. The Matching Pursuit algorithm generates a sparse composition of a video 
sequence in a series of spatio-temporal atoms, taken from an over complete dictionary of three-dimensional basis 
functions. The dictionary is generated by shifting, scaling and rotating two different mother atoms in order to cover the 
whole frequency cube. An embedded stream is then produced from the series of atoms. They are first distributed into sets 
through the set-partitioned position map algorithm (SPPM) to form the index-map, inspired from bit plane encoding. Scalar 
quantization is then applied to the coefficients which are finally arithmetic coded. A completeMP3D codec has been 
implemented, and performances are shown to favorably compare to other scalable coders like MPEG-4 FGS and SPIHT-
3D. In addition, the MP3D streams offer an incomparable flexibility for multiresolution streaming or adaptive decoding. 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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1. INTRODUCTION 

Most successful video compression algorithms are 
based on the hybrid approach that combines motion 
compensation between successive frames, and DCT 
block transform. Such schemes have been quite 
successful, and represent the core of the current 
compression standards, like H263 or MPEG-4. While 
they provide interesting performance in compression, 
these coders generally lack an increasingly important 
feature, which is a flexible scalability. The need for 
adaptive streaming or the possibility to offer different 
resolutions from a single bitstream is fueled by the 
continuing development of heterogeneous networks and 
infrastructure. In streaming applications, for example, a 
progressive stream allows to adapt to changing network 
conditions, or to clients with different access 
bandwidths. Spatio-temporal scalability offers yet 
additional flexibility since the frame rate and the size of 
the decoded frames can be adapted to the client 
capacities. Due to these recent needs in adaptive coding, 
scalability is getting a lot of attention and efforts from 
the research community. 
 

A fine granular scalability (FGS) video coding 
scheme [1] based on MPEG has recently been proposed 
to provide SNR scalability. In the same context, Van der 
Schaar and Hayder [2] proposed MPEG-based video 
coding scheme with SNR and temporal scalability. A 
different class of scalable video coding algorithms has 
been introduced for video streaming applications, based 
on a 3-D wavelet coding approach. These methods 
generally use temporal filtering in the direction of 
motion [3, 4, 5, 6], but interesting results have also been 
shown in the absence of any motion compensation as in 
SPIHT-3D [7], which may provide also additional 
adaptivity and error resilience. In this paper, a new 
highly scalable video coding scheme is proposed, based 
on a three-dimensional Matching Pursuit algorithm 
(MP3D). The compression performances are shown to 
compare favorably to SPIHT-3D and MPEG-FGS, 
especially at low coding rates. Additionally, the stream 
generated by MP3D provides an increased flexibility in 
terms of adaptivity. The paper is organized as follows. In 
Section 2, the matching pursuit video coder is presented, 
and the dictionary construction is detailed. In Section 3, 
the scalability features of MP3D (i.e., SNR, spatial and 
temporal scalability), are presented. The performances of 
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MP3D are then discussed in Section 4, and Section 5 
finally concludes the paper. 
 
2. MP3D: MATCHING PURSUIT VIDEO CODER 
 
2.1. Sparse Representations 
 
Most acclaimed technical solutions to both image and 
video compression, namely the JPEG2000 and 
MPEGx/H.26x families of standards, rely heavily on 
transform coding. Moving to the transform domain is 
usually performed in order to obtain decorrelated sets of 
coefficients on which scalar quantization and entropy 
coding is performed, and this drives the choice of the 
transform. Most techniques use two well controlled 
orthonormal basis (ONB): DCT and wavelets. 
Performing the transform by means of an ONB allows 
the use of well studied data compression results, and in 
both cases fast algorithms help keeping a low 
complexity implementation. Unfortunately, restricting a 
representation to an ONB fixes a very rigid structure on 
the components of the signals that are represented and 
sometimes dramatically damages the coherence and 
quality of important visual primitives: This result in 
annoying artifacts at low bit rates on textures and edges. 
To cope with these problems, an interesting line of 
research consists in representing the image with a 
transform whose building blocks match important signal 
structures. Unfortunately the price to pay for such a 
freedom is that no genuine ONB can be used and a new 
coding paradigm has to be adopted. In the following, we 
basically try to derive a coding scheme that preserves 
pre-defined structures in a sequence of frames. More 
specifically we consider such a sequence as a 3-D space-
time signal (f) and try to efficiently encode coherent 
spatio-temporal structures. The chosen approach relies 
on expanding the signal as a linear superposition of 
generalized waveforms tuned to match the requested 
structures and selected among a vast library: 
 

          
 
 
 

 
The only constraint on the collection D = {gγ, γ∈  Г} is 
that it is dense in the space of finite energy signals. In 
the following we refer to gγ as an atom and to D as a 
dictionary.  The set γ in (1) can be chosen as an 
anonymous set of labels but may also carry important 
information about the atoms, for example space and 
frequency localization, as will be the case in this paper. 
Of course we also wish that the necessary parameters in 
this expansion, namely the set of coefficients cί and γί 
indexes yield good compression performances and this 
leads us to a generic requirement about (1), namely that 
this expansion is sparse enough. 

 
Without additional constraints on D and in particular if it 
is not an ONB, there is generally not a unique sparse 
expansion. One possible solution can be to look for the 

sparsest possible exact expansion that is minimizing the 
number of coefficients in (1). This unfortunately leads to 
a daunting combinatorial optimization problem that is 
NP hard. A close solution may be provided by relaxing 
this problem and trying to minimize the ℓ¹ norm of the 
coefficients which leads to the Basis Pursuit algorithm 
deeply studied by Donoho et al. [8]. Interestingly this 
algorithm sometimes leads to the optimal sparsest 
solution of (1) with particular dictionaries [9, 10, 11]. 
Alternatively, the Matching Pursuit (MP) algorithm [12] 
provides a interesting generic solution to (1) by 
iteratively decomposing the signal using a greedy 
strategy. Starting with Rο = Ι, the nth iteration reads 
 

 
 

Where the atom gγη is the one having maximum 
correlation with Rη 
 

 
After N steps MP yields a spares approximation:  

 
 
Where RN is a small residual error. Matching Pursuit 
converges, that is || RN || →0 when B tends to infinity and 
converges even exponentially in finite dimension [12]:  
 

 
 
Where β is constant that solely depends on D and is getting close 
to 1 when the redundancy increases. Recently more 
constructive results have been obtained concerning the 
approximation properties of greedy algorithms [11] but 
their description is beyond the scope of this paper. As 
already shown in [13] MP is intrinsically well suited for 
compression of visual information because it easily 
yields scalable streams by simply truncating (4). 
Moreover a good approximation is obtained with few 
well chosen components, mostly because MP will first 
pick the most prominent signal structures in the 
dictionary. This property makes it particularly useful at 
very low bit rates.  
 
2.2. Spatio-temporal dictionary 
In order to capture the video signal information, the 
atoms have to be able to efficiently represent both the 
spatial image content, and the temporal information 
within groups of frames. In the same time, the dictionary 
has also to be designed to permit multiresolution 
decoding, and provide spatial and temporal scalability 
with minimal effort. In summary, an effective dictionary 
should mainly offer the following properties [14]:  
 

•  UMultiresolution,  
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•  Localization: The atoms are localized in space 
and frequency. 

•  Directionality: the atoms can be oriented along 
image singularities.  

•  Anisotropy:  the atoms can be deformed to 
match signal components.  

 
Based on these requirements, the proposed encoder uses 
the following dictionary. Firstly, the spatial parts of the 
atoms are generated from two mother functions that 
satisfy the localization property: a 2-D Gaussian function 

  
and a wavelet-like function where one of the directions 
corresponds to the n² d derivative 

 of 
a Gaussian function. The 2-D Gaussian is used to 
capture the low frequency spatial features, whereas 
clearly the wavelet-like function, besides nice 
localization properties and a small number of 
oscillations, is able to capture image singularities like 
edges and contours. This function has been shown to 
yield good approximation performance in natural image 
representation [15]. The over complete spatial dictionary 
is then generated by shifting, orienting, and scaling the 
two spatial mother atoms, as follows: 

•  Shift: U(x0, y0)g=g((x-x0),(y-y0))  
•  Orientation: Uθ g2 = g2( rθ (x,y)) 
•  Uag1=g1(x/a , y/a), U(a1,a2)g2=g2(x1/a1,y/a2) 

 
Clearly, the number of translation, rotation and 

scaling has to be limited to avoid a prohibitive dictionary 
size, and thus limit the complexity of the search 
algorithm. In the current implementation, (x0, y0) sweeps 
the whole image, and  where i=0, 1,.,.,.,15. The 
scaling factors finally are distributed on a logarithmic 

scale, as  with ί = 0,..., .  
 

Secondly, the temporal part of the dictionary is 
built on β - spline βⁿ (t) functions, in order to efficiently 
capture motion information, and in the same time satisfy 
the multiresolution and localization properties. The order 
of βⁿ (t) has to be larger than 2, to have a smooth 
transition and benefit from a limited support. 
 

 Experiments have shown that n=3 already offer 
good performance for group of pictures of a commonly 
accepted size of 16 frames. The temporal part of the 
dictionary is finally generated by shifting and scaling the 

, similarly 
to the construction of the spatial part of the dictionary. In 
the current implementation, translation covers the 
complete group of frames  and the 
scaling follows a logarithmic distribution,  with ί = 

0,�,  .  
 

It is noteworthy to notice that in the temporal scale 
 , ί refer to the number of frames that are filtered in 

the sequence. For example, ί=0, means that only Nframe 
is considered, what happens in case of abrupt motion or 
scene change. It can be noted also that the present 
implementation does not contain any rotation of the 
temporal functions; this part is currently under study.  
Finally, the video dictionary is built on spatio-temporal 
separable functions, which combine the spatial and 
temporal sub-dictionaries to yield three dimensional 
atoms able to match the video signal structures. 
 
2.3. MP3D encoder 
 

 
Fig. 1. Block diagram of the MP3D encoder 

 
The complete MP3D encoder can be 

represented with the block diagram in Figure 1. The 
original video sequence is Þrst segmented in group of 16 
frames (GOP), whose length has been chosen as a good 
trade-off between encoding complexity, compression 
efficiency and decoding delay. The Matching Pursuit 
encoder iteratively selects the 3-D atoms  from 
the dictionary that best match the residual GOP signal, in 
terms of the energy of the correlation coefficients, 
following (3). This iterative process continues until a 
stopping criterion is reached. Figure 2 (a) shows how the 
PSNR of the coded video sequence (foreman qcif) 
behaves in terms of iteration number ί. Clearly, the rate 
of increase is very fast at the beginning, due to the nature 
of MP. The coefficients  indeed decay 
exponentially with the iteration ί as shown in Figure 2 
(b). 
 

 
 
    (a) PSNR vs iteration           (b) log (|cί|) vs iteration 
 

 
 
A classical implementation of the Matching 

Pursuit search would result in a quite high heavy 
computation process, since the encoder needs to browse 



Int. J. of Advanced Networking and Applications   478 
Volume: 02 Issue: 01 Pages: 475-480 (2010) 

the dictionary and perform the inner product between 
each element and the residual signal for every MP 
iteration ί. The current implementation of the MP3D 
uses a reduced complexity scheme, based on a Fast 
Fourier Transform. Since the dictionary is shift-
invariant, the inner products are calculated in Fourier in 

 where n is the size of the signal. 
Coefficients and atoms are then encoded in order to 
provide a ßexible bitstream, but still with a high 
compression ratio. The embedded coding is achieved 
through the set-partitioned position map algorithm 
(SPPM), which is derived from the bit plane encoding. 
The atoms are Þrst split into  sets according to their 
energy, where each set contains�� ���contiguous atoms, 
and then spatially sorted to form the index-map. The Þrst 
sets contain fewer elements than the other sets, but have 
larger global energies due to the properties of the MP 
decomposition (see Figure 2 (b)). The number of sets 
and their size is determined by the energy of the 
coefficients. The distribution of the coefficients in each 
set is found to be Laplacian, so uniform quantization is 
applied since it has been shown to be close to optimal 
[16]. Finally, the index-map of each set and its quantized 
coefficients are losslessly coded with an adaptive 
arithmetic coding scheme. The decoding process is very 
simple. It simply consists in decoding the coefficients, 
and adding the 3-D atoms multiplied by the 
corresponding coefficients to reconstruct the video 
signal. 
 
3. SCALABILITY PROPERTIES 
 

Due to the multiresolution structure of the 
dictionary, MP3D streams are highly scalable in terms of 
spatial or temporal (i.e., frame rate) resolution. The 
geometric properties of the dictionary ensures very easy 
transcoding operations, such a single bitstream, can with 
no effort be decoded at any spatial resolution (as long as 
the re-scaling is isotropic) and various frame rate. For 
example, a coded video signal of size ������with a 

frame rate �� can be spatially transcoded into a video 
signal   of spatial resolution  at the same 
frame rate as follows : 
 

 
 
Where   are the atom coefficients and    corresponds 
to the atom  after transcoding. Transcoding simply 
modiÞes the atom index  which 
becomes  where  and  
respectively represents the spatio-temporal position and 
scale of the atom . 
 

Figure 3 illustrates an example of the spatial 
transcoding of the Foreman sequence at 200 kbps, scaled 
with a factor ½. 

 
 In addition to spatio-temporal scalability, 

MP3D intrinsically provides SNR scalability thanks to 
the properties of the Matching Pursuit algorithm. The 
energy of the coefficients is exponentially decreasing 
along the iteration number. Therefore, simple truncation 

of the embedded bitstream produced by the proposed 
encoder still ensures that the decoder receives most of 
the signal energy for the 
available bandwidth. 
 
     (a) Original frame                             
(b) Decoded frame 
 
 
 
                            
                                                      
 

 
(c) Scaled by 0.5 

     
Fig. 3. The 1st frame in foreman decoded and transcoded  
 
4. EXPERIMENTAL RESULTS 

Performances of MP3D are now compared with 
state-of-the-art scalable video coding schemes, like 
MPEG-4 (FGS) and SPIHT-3D. The rate-distortion 
characteristics are Þrst compared to SPIHT-3D for the 
video sequence foreman (qcif format), with GOP size 16 
As shown in Figure 4, the PSNR quality is better for 
MP3D than for SPIHT-3D at low bit rates [20 - 250]  

kbps. Note that both schemes offer nice scalability 
properties, with MP3D being more ßexible however. 
When compared against MPEG-4 with spatial 
scalability, MP3D outperforms the multi-layer scheme 
by almost one dB at low bit rates. Finally, Figure 5 
proposes a comparison with the state-of-the-art MPEG-4 
with FGS scalability having the base layer coded at 
different bit rates (46, 60, 70) kbps for the same video 
sequence. When used with a base layer at 46 kbps for 
increased SNR scalability, MPEG-FGS loses up to 2.6 
dB against MP3D at higher bit rates 250 kbps. When the 
base layer is coded at 60 kbps, FGS is slightly better 
than MP3D at low bit rates, but it loses a lot of ßexibility 
in terms of scalability, since it obviously cannot serve bit 
rates lower than the base layer. It also loses its quality 
advantage at higher bit rates. Finally, visual comparisons 
also favors MP3D at low bit rates, since it provides less 
annoying artifacts than ringing in wavelet-based coding, 
or blocking in DCT-based coding.  
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Fig. 4. R-D comparison between MP3D, SPIHT-3D and 
MPEG with S-scalability for qcif foreman 30fps 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. R-D comparison between MP3D and MPEG-FGS 
            for qcif foreman 30fps 
 
 
5. CONCLUSIONS 
 
This paper has presented a novel video coding scheme 
based on a Matching Pursuit algorithm. It has been 
shown to provide a highly ßexible scalable bitstream, as 
a response by an ever increasing demand for adaptive 
coding structures. In the same time, it still favorably 
compares with state-of-the-art scalable coders in terms 
of rate-distortion characteristics at low bit rates. Even if 
the current implementation can still be greatly improved, 
the MP3D structure thus represents a promising 
alternative for scalable video coding and streaming 
applications. Finally, including orientation in the 
temporal direction to capture motion information is 
currently under progress. 
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