
International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 53

Identification, Categorization and Weighting of
Software Engineering Attributes for Quality

Evaluation of Software Project Documentation
Vikas S. Chomal

1Assistant Professor
2Research Scholar

1The Mandvi Education Society Institute of Computer Studies, Mandvi, Gujarat, India
2Singhania University, Pacheri Bari, District – Jhunjhunu, Rajasthan

Email: vikschomal80@gmail.com
Dr. Jatinderkumar R. Saini

1Director I/C & Associate Professor
2Research Supervisor

1Narmada College of Computer Application,
Bharuch, Gujarat, India

2Singhania University, Pacheri Bari, District – Jhunjhunu, Rajasthan
Email: saini_expert@yahoo.com

--ABSTRACT--
Software project documentation is an editorial whose intention is to converse information about the software
system. An elementary objective of software engineering is to construct the finest potential operational software
along with the most excellent supporting documentation. This paper highlights the results of analysis of software
project documentations of large software projects. Documentations of final year students of Masters level course
have been considered for the research purpose. These documentations consist of the artefacts like requirement
analysis, technical environment, database design, structural and object oriented modelling techniques, screen
layouts and testing techniques along with test case and data. The results are compiled from more than 500 large
software project documentations developed during a period of academic years from 2001-2002 to 2011-2012. After
compilation of results and studying various artefacts in software project documentation, we categorized artefacts
into two broad categories (a) Quantifiable attributes and (b) Non-quantifiable attributes. Further, after
categorization, weights are assigned to these attributes for scoring documentation of student software project.

Keywords: Container Relationship, Non – Quantifiable, Quantifiable, Software Attributes, Software Documentation,
Software Development, Software Engineers, Software Projects, Weight Assignment

I. INTRODUCTION

Software documentation is an essential feature of both
software projects and software engineering in common. In
piece of evidence, documentation engineering has become
an accepted sub-domain in the software engineering
society. The task of documentation in a software
engineering milieu is to commune information to its
spectators and instils knowledge of the system it describes
[1]. According to Sommerville [8], documents associated
with a software project and the systems being developed
have a number of associated requirements:
1. They should act as a communication medium between
members of the development team.
2. They should be a system information repository to be
used by maintenance engineers.
3. They should provide information for management to help
them plan, budget and schedule the software development
process.
4. Some of the documents should tell users how to use and
administer the system.

Software development is partly a learning and
communication process. Software developers need to
communicate with each other and also with various interest
groups of the system to be developed, such as customers,
marketing people, end users, service personnel, and
authorities. Documentation is the basis for communication
in software development organizations as well as between
development organizations and the interest groups of the
system to be developed. To ensure efficient communication,
all communicating parties need to be able to identify
various software documents, and, to ensure that the right
information is found, all communicating parties should be
able to anticipate what information is in each document
[10][14]. Cock & Visconti [11] elucidate that empirical data
shows that software documentation products and processes
are key components of software quality. These studies show
that poor quality, out of date, or missing documentation is a
major cause of errors in software development and
maintenance. For example, the majority of defects

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 54

discovered during integration testing are design and
requirements defects, e.g. defects in documentation that
were introduced before any code was written.

The paper is divided into five sections; first section is
introductory, followed by literature review. Section three
represents methodology followed by finding and analysis
and at last concluding section.

II. RELATED LITERATURE REVIEW

Forward and Lethbridge [2,3] states that, documentation
attributes describe information about a document beyond
the content provided within. Example attributes include the
document’s writing style, grammar, extent to which it is up
to date, type, format, visibility, etc. Documentation artefacts
consist of whole documents, or elements within a document
such as tables, examples, diagrams, etc. An artefact is an
entity that communicates information about the software
system. According to Boer [13], the effectiveness of
documentation within a development process is determined
by the way in which the intentions of the authors
correspond to the expectations of the potential readers. In a
typical software development process, many different kinds
of documents are produced and consumed at various points
in time. The contents of those documents necessarily
exhibit a certain amount of overlap. People may lose track
of the meaning of individual documents; which information
it contains and what its role is in the development process.

Sulaiman and Sahibudding [15] puts forward that
system documentation (SD) is undoubtedly vital as one of
the sources in software understanding. Despite its
importance, practitioners are often confronted with the
problems related to system documentation. A number of
tools have been introduced in order to assist documenting
activities. However such tools are still not widely used
because they generally fail to meet users' needs. Briand [5]
focuses that, it is a well-known fact
that software documentation is, in practice, poor and
incomplete. Though specification, design, and test
documents-among other things-are required by standards
and capability maturity models (, such documentation does
not exist in a complete and consistent form in most
organizations. When documents are produced, they tend to
follow no defined standard and lack information that is

crucial to make them understandable and usable by
developers and maintainers. Then a fundamental practical
question, which motivated this keynote address, is to better
understand what type of documentation is required, what is
needed to support its completeness and consistency, and
what is the level of precision required for each type of
document. These questions cannot be investigated at that
level of generality though. Answers are likely to be very
context-dependent if they are to be precise. Briand [5]
research work focuses on object-oriented development and
the Unified Modeling Language (UML).

Nasution and Weistroffer [12] lays down that, a well
planned and documented systems development project is
more likely to result in a system that meets the expectations
of both the intended users and the software engineers.
Arthur and Stevens [4] in their work projected that, the
investigation focuses on assessing the adequacy
of project documentation based on an identified taxonomic
structure relating documentation characteristics. Previous
research in this area has been limited to the study of isolated
characteristics of documentation and English prose, without
considering the collective contributions of such
characteristics. The research described takes those
characteristics, adds others and establishes a well-defined
approach to assessing the `goodness' of software
documentation.

Chomal and Saini [18] in their work stated that, if
requirements are not properly specified, analyzed and
properly documented, then it will lead to software as a
failure. Delaney and Brown [7] proposed a technical report
which outlines the contents of a minimal set of software
development documents, tailored for use by students in
software engineering projects, and firmly based on IEEE
standards. The document set is designed to support software
development activities. It provides a framework for use in
undergraduate software engineering projects, both
individual and team-based, that helps students to learn best
practice. A supplementary report describes the content of
each document in more detail. They also suggested and
identified the minimal core set of software, and identified
the activities that produce them, which is described in Table
– 1.

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 55

Table – 1: [9]

Document Deliverables Description Activities
Software Project
Management
Plan (SPMP)

Description of the software approach
and associated milestones.

System requirement analysis
Software requirement analysis

Software
Requirements
Specifications
(SRS)

Description of the expected software
features, constraints, interfaces and
other attributes.

Process implementation

Software Design
Description
(SDD)

Description of how the software will
meet the requirements. Also describes
the rationale for design decisions
taken.

System architectural design
Software architectural design
Software detailed design

Software Test
Documentation
(STD)

Description of the plan and
specifications to verify and validate
the software and the results.

Software qualification testing
System qualification testing

According to Chomal and Saini [17, 19] and Forward [3],
software documentation is an essential feature of both
software projects and software engineering in common. In
piece of evidence, documentation engineering has become
an accepted sub-domain in the software engineering
society. The task of documentation in a software
engineering milieu is to commune information to its
spectators and instils knowledge of the system it describes.
Abdulaziz et al [9] conducted an empirical investigation
using a comparative case study research method. The basis
for the work was concerned with the requirements for
information system documentation. Jazzar's work resulted
in eight hypotheses that attempt to model the requirements
for achieving effective, high quality documentation
products and processes.

Chomal and Saini in [21] focuses that, documentation is the
written record of what the software is supposed to do, what
it does, how it does it and how to use it. Virtually everyone
agrees that good documentation is important to the analysis,

development and maintenance phases of the software
process and is an important software product. Forward [3]
discusses how certain attributes contribute to a document’s
effectiveness. They conducted a survey and asked the
participants how important particular document attributes
contribute to its overall effectiveness. Participants gave
rating between 1 (least important) and 5 (most important).
Table - 2 lists the attributes considered in the question in
descending order based on the attributes perceived
contribution to a document’s effectiveness.

According to Chomal and Saini [16, 20] and Visconti and
Cook [6] points up that, documentation seems to be
considered a second class object and not as important as the
software itself. However, empirical data shows that low
quality or missing documentation is a major cause of errors
in software development and maintenance. Low quality or
missing documentation is a major cause of errors in
software development and maintenance.

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 56

Table – 2: Document attributes and effectiveness [3]

III. METHODOLOGY
Chomal and Saini [17] in their work considered
documentation of software projects prepared by students as
a source for data collection. Specifically, documentations of
large software projects of only final year students of
Masters level course have been considered for the research
purpose. The duration of these software projects is six
months. The said documentations of software projects were
procured from college libraries. These documentations
include complete project profile along with the following
elements:
1) Requirement analysis
2) Technology used
3) Database design
4) Structural and Object Oriented Modelling Techniques
5) Screen layouts
6) Testing techniques along with test case and data

We analyzed and reviewed 505 large software project
documentations developed during a period of academic
years from 2001-2002 to 2011-2012. During our
exploration we considered all of the above described
elements. For simplicity and better exhaustive analysis of
the documentations, the phased process was followed. As

each project is a uniquely different definition from other
projects, it is noteworthy here that this was repeated for
each of the 505 project reports under study. These phases
are presented below:
1) Exploration of Project Profile
2) Exploration of Existing System and Proposed System
3) Exploration of Requirement Gathering Techniques
4) Exploration of Requirement Analysis done by Students
5) Exploration of Technology on which Software Project
carried out
6) Exploration of Process Model adapted for Software
Project Development
7) Exploration of Data Dictionary (including Database
Design)
8) Exploration of various Structural and Object Oriented
Modelling Techniques
9) Exploration of Screen Layouts
10) Exploration of Generated Reports
11) Exploration of Testing Techniques and Test data

In the present work, we identified 103 software attributes
from software project documentations which are mentioned
in Table – 3.

Document Attribute Mean Std. dev. % Rate

Content – the document’sInformation 4.85 1.57 85 % 0 %

Up-to-date 4.35 0.89 46 % 0 %
Availability 4.19 0.79 41 % 4 %
Use of examples 4.19 0.85 37 % 4 %
Organization – sections /Subsections 3.85 0.64 30 % 4 %
Type – req, spec, design,etc. 3.78 0.63 26 % 11 %
Use of diagrams 3.44 0.60 15 % 22 %
Navigation – quality of internal / external links 3.26 0.44 19 % 33 %
Structure – arrangement of text, diagrams, figures 3.26 0.60 11 % 22 %
Writing Style – sentence / paragraph structure,
Grammar

3.26 0.67 7 % 19 %

Length – not too long or Short 3.15 0.64 7 % 22 %
Spelling and grammar 2.93 0.85 0 % 22 %
Author 2.63 0.41 7 % 48 %
Influence to use it 2.62 0.48 12 % 50 %
Format – pdf,, doc, txt, xml, etc. 2.42 0.58 0 % 54

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 57

The next section presents the findings obtained through
analysis of documentation reports.

IV. FINDINGS AND ANALYSIS
Chomal and Saini [17] in their work considered
documentation of software projects prepared by students as
a source for data collection. During presenting and
analysing, they also identified points which can be termed
as the errors. There were eleven broad categories under

which various errors were found. These broad categories
are:
1) Process Model
2) Data Flow Diagram
3) Process Specification
4) Entity Relationship Diagram
5) Form Design / User Interface

Sr No. Attribute Sr Attribute Sr No Attribute
1 Acceptance Testing 36 Functional Requirement 71 Software Life Cycle
2 Activity Diagram 37 Functionality 72 Software Project
3 Adaptive Maintenance 38 Gantt Chart 73 Software Quality
4 Alpha Testing 39 Integration Testing 74 Software Requirement
5 Beta Testing 40 Levels of Testing 75 Software Size
6 Black Box Testing 41 Milestone 76 State Based Testing
7 Boundary Value Analysis 42 Non-Functional 77 State Diagram
8 Branch Testing 43 Normal Requirement 78 Structured Design
9 Bug 44 Object Oriented Analysis 79 System
10 Class Diagram 45 Object Oriented Design 80 System Testing
11 Code 46 Operational Feasibility 81 Table Relationship
12 Control Flow Based Testing 47 Path Testing 82 Technical Feasibility
13 Corrective Maintenance 48 Perfective Maintenance 83 Test Case Design
14 Critical Path Method 49 Process model 84 Test Case Execution and
15 Data Dictionary 50 Process Specification 85 Test Case Generation
16 Data Flow Diagram 51 Project Monitoring and 86 Test Case Review
17 Debugging 52 Project Planning 87 Test Case Specification
18 Defect 53 Project Progress 89 Test Cases
19 Defect Removal Efficiency 54 Project Scheduling 90 Test Data
20 Design 55 Project Tracking 91 Test Driven
21 Design Constraints 56 Quality Function 92 Test Plan
22 Document Structure 57 Regression Testing 93 Testing
23 Economic Feasibility 58 Reliability 94 Testing Process
24 Effort 59 Reports 95 Time Line Chart
25 Entity Relationship Diagram 60 Requirement Analysis 96 Unified Modelling
26 Equivalence Class 61 Requirement Validation 97 Unit Testing
27 Errors 62 Requirements 98 Usability
28 Excited Requirement 63 Risk Management 99 Use Cases
29 Expected Requirement 64 Sequence Diagram 100 User Interface
30 External Interface 65 Size Estimation 101 Validation
31 Failure 66 Smoke Testing 102 Verification
32 Fault Tolerance 67 Software 103 White Box Testing
33 Faults 68 Software Documentation
34 Feasibility Study 69 Software Engineering
35 Formal Technical Review 70 Software Environment

Table – 3: Software Attributes

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 58

6) Database Design
7) Code Design
8) Exception Handling
9) Reports
10) Testing
11) Documentation
Further, from Table – 3 which consists of software
attributes, we categorize them into two broad categorization
(a) Quantifiable attributes and (b) Non-quantifiable
attributes. Quantifiable attributes are those attributes which
are considered as a metrics for measuring software project
documentations. Whereas, Non-quantifiable attributes are
those attributes which are not regarded as a metrics for
evaluating software project documentations. From Table –

3, we present quantifiable and non – quantifiable attributes
in Table – 4 (a) and Table – 4 (b), which are further
classified on the basis of container relationship and they are
arranged in alphabetical order. Container relationships
characterize regarding category and their sub categories, for
example in Table – 4(a) we stated requirement analysis as
main category and its various sub categories are (i) excited
requirement, (ii) expected requirement, (iii) functional
requirement and so on. For the current work, we have
considered only those attributes which can be quantified
easily and the other attributes have been treated as non-
quantifiable attribute.

Table – 4: (a) Quantifiable Attributes

Sr
No.

Attributes Sr
No.

Attributes

1. Code 6. Requirement Analysis
(a) Expected Requirement
(b)External Interface Requirement
(c) Functional Requirement
(d)Non-Functional Requirement
(e) Normal Requirement
(f) Requirement Validation

2. Design
(a) Design Constraints
(b)User Interface

7. Structured Design Methodology
(a) Data Dictionary
(b) Data Flow Diagram
(c) Entity Relationship Diagram
(d) Process Specification
(e) Table Relationship Diagram

3. Feasibility Study
(a) Economic Feasibility
(b)Operational Feasibility
(c) Technical Feasibility

8. Unified Modelling Language
(a) Activity Diagram
(b)Class Diagram
(c) Object Oriented Analysis
(d)Object Oriented Design

(e)Sequence Diagram
(f) Use Cases

4. Process model 9. Verification
5. Project Monitoring and Control

(a) Critical Path Method

(b)Gantt Chart
(c) Project Planning
(d)Project Progress
(e)Project Scheduling
(f) Project Tracking
(g) Time Line Chart

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 59

Further, after classifying attributes into quantifiable and
non-quantifiable categories, we assigned weights only to

quantifiable attributes. For assigning weights, we randomly
selected one quantifiable attribute to begin with and

Sr No. Attributes Sr No. Attributes
1. Maintenance

(a) Adaptive Maintenance
(b) Corrective Maintenance
(c) Perfective Maintenance

5. Testing
(a) Acceptance Testing
(b) Alpha Testing
(c) Beta Testing
(d) Black Box Testing
(e) Boundary Value Analysis
(f) Branch Testing
(g) Bugs
(h) Control Flow Based Testing
(i) Defect
(j) Equivalence Class Partitioning
(k) Errors
(l) Failure
(m)Faults
(n) Integration Testing
(o) Levels of Testing
(p) Path Testing
(q) Regression Testing
(r) Smoke Testing
(s) State Based Testing
(t) System Testing
(u) Test Case Design
(v) Test Case Execution and Analysis
(w) Test Case Generation
(x) Test Case Review
(y) Test Case Specification
(z) Test Cases
(aa) Test Data
(bb) Test Driven Development
(cc) Test Plan
(dd) Testing Process
(ee) Unit Testing
(ff) Usability
(gg) Validation
(hh) White Box Testing

2. Risk Management 6. Validation
3. Size Estimation

(a) Effort
(b) Software Size

7. Others
(a) Debugging
(b)Defect Removal Efficiency
(c) Fault Tolerance
(d)Formal Technical Review
(e) Functionality
(f) Milestone
(g) Quality Function Deployment
(h)Reliability
(i) Reports

4. Software Engineering
(a) Documentation Structure
(b) Software
(c) Software Environment
(d) Software Life Cycle
(e) Software Project
(f) Software Quality
(g) Software Requirement
(h) Specification System

Table – 4: (a) Non-Quantifiable Attributes

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 60

proceeding to other attributes while keep on comparing the
already assigned weights and the attributes to which
weights are to be assigned. This practice was affirmed by
conducting a small survey for assigning weights to 9

quantifiable attributes by 19 software engineers. The
results of the survey are presented in tabular format in
Table 5, wherein ‘SEn’ indicates the values provided by nth

Software Engineer, with n ranging from 1 to 19.

Table – 5: Survey Result

We now present the weights averaged based on the values
provided by 19 software engineers in Table 6. It is
noteworthy to mention that each of the 9 quantifiable
attributes were assigned weight out of 100 and it was not

necessary to have the total of weights of 9 attributes as
break-up of 100. In scientific research community, this
practice is technically known as based on human perception
and general intelligence.

Table – 6: Weight Assignments to Quantifiable Attributes

Based on the average values presented in Table 6, it has
been found that the software engineers give maximum
weight to Requirement Analysis (72.89 %), while
Structured Design Methodology (71.31%) was found to
have achieved the second highest weight. Similarly, the
minimum weight was found to be assigned to Process
Model (48.94%) while the second lowest weight was
found to be achieved by Code (50.26%).

V. CONCLUSION
In the present work, we identified 103 software attributes
from software project documentations. Further we
categorize these software attributes into two broad
categorization (a) Quantifiable attributes and (b) Non-
quantifiable attributes. Quantifiable attributes are those
attributes which are considered as a metrics for

Sr
No.

Quantifiable Attribute Average
(%)

1. Code 50.26
2. Feasibility Study 52.36
3. Process Model 48.94
4. Project Monitoring and Control 50.52
5. Requirement Analysis 72.89
6. Structured Design

Methodology
71.31

7. Unified Modelling Language 62.89
8. User Interface Design 59.21
9. Verification 67.63

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 61

measuring software project documentations. Whereas,
Non-quantifiable attributes are those attributes which are
not regarded as a metrics for evaluating software project
documentations. The list of 103 software attributes,
which we categorized into quantifiable and non-

quantifiable are most relevant software attributes
according to us. Further we do not claim that the lists of
these 103 software attributes are exhaustive listing. The
basic goal of assigning weights to quantifiable attributes
is to score software project documentation.

REFERENCES
[1] Andrew J. Forward, “Software Documentation –

Building and Maintaining Artefacts of
Communication”, presented to the Faculty of
Graduate and Postdoctoral Studies in partial
fulfilment of the requirements for the degree Master
in Computer Science, Ottawa – Carleton Institute of
Computer Science, University of Ottawa, Canada,
2002.

[2] Andrew J. Forward, “The Relevance of Software
Documentation, Tools and Technologies: A Survey”

[3] Arthur J.D , Stevents K.T, “Assessing the adequacy
of documentation through document quality
indicators”, Software Maintenance, 1989.,
Proceedings., Conference on
DOI: 10.1109/ICSM.1989.65192 Publication Year:
1989 , Page(s): 40 - 49 Cited by: Papers
(6) | Patents (1) IEEE CONFERENCE
PUBLICATIONS

[4] Briand. L. C, “Software documentation: how much
is enough?” Published in: Software Maintenance and
Reengineering, 2003. Proceedings, Seventh
European Conference on 26 – 28 March 2003,
pages 13 – 15, ISSN – 1534 – 5351.

[5] Curtis R. Cook, Marcello Visconti, “NEW
AND IMPROVED DOCUMENTATION PROCESS
MODEL”, Proceedings of the 14th Pacific
Northwest Software Quality Conference, 1996.

[6] Declan Delaney, Stephen Brown,
“DOCUMENT TEMPLATES FOR STUDENT
PROJECTS IN SOFTWARE ENGINEERING”,
Department of Computer Science, National
University of Ireland, Maynooth Date: August 2002
Technical Report: NUIM-CS-TR2002-05

[7] Ian Sommerville, Software Documentation,
Lancaster University, UK Issue 3, August 2000.

[8] Jazzar, Abdulaziz , Walt Scacchi,
“Understanding the requirements for information
system documentation: an empirical investigation”,
COOCS `95, Sheraton Silicon Valley, California,
USA, ACM Press, p268 – 279.

[9] Kari Laitinen, “Document Classification for
Software Quality Systems”, Technical Research
Centre of Finland (VTT) Computer Technology
Laboratory, ACM SIGSOFT SOFTWARE
ENGINEERING NOTES vol 17 no 4 Oct 1992 Page
32

[10] Marcello Visconti , Curtis Cook., “Software
System Documentation Process Maturity Model”,
Proceeding CSC ’93 of the 1993 ACM conference on

Computer Science Pages 352 – 357 New York, USA,
(1993).

[11] Nasution, M.F.F. ; Weistroffer, H.R.,
“Documentation in Systems Development: A
Significant Criterion for Project Success”

[12] Remco C. de Boer, “Writing and Reading
 Software Documentation: How the Development
 Process may Affect Understanding”
[13] Scheff, Benson H. and Tom Georgon.,

“Letting software engineers do software engineering
or freeing software engineers from the shackles of
documentation”, p81 – 91, SIGDOC '88, Ann Arbor,
Michigan, USA, ACM Press, 1988.

[14] Sulaiman. S, Sahibudding. S “Production and
maintenance of system documentation: what, why,
when and how tools should support the practice”,
Published in: Software Engineering Conference,
2002. Ninth Asia-Pacific, pages 558 – 5667, ISSN –
1530 – 1362.

[15] Vikas S. Chomal, Dr. Jatinderkumar R. Saini,
“ Cataloguing Most Severe Causes that lead
Software Projects to Fail”, International Journal on
Recent and Innovation Trends in Computing and
Communication , May – 2014 ISSN: 2321-8169
Volume: 2 Issue: 5 pages 1143– 1147

[16] Vikas S. Chomal, Dr. Jatinderkumar R. Saini,

International Journal of Emerging Trends &
Technology in Computer Science (IJETTCS)ISSN
2278-6856, Volume 2, Issue 5, September – October
2013

[17] Vikas S. Chomal, Dr. Jatinderkumar R. Saini,

NATIONAL JOURNAL OF COMPUTER
SCIENCE AND TECHNOLOGY] Volume: 04 |
Issue: 02 | July – December – 2012

[18] Vikas S. Chomal, Dr. Jatinderkumar R. Saini,
ftware Quality Improvement by Documentation

– National
Journal of System And Information Technology
ISSN : 0974 – 3308, Volume 6, Number 1, June
2013, Page Number: 49 – 68

[19] Vikas S. Chomal, Dr. Jatinderkumar R. Saini,
Template to Improve Quality of

Database Design on basis of Error Identification

International Journal of Engineering and
Management Research ISSN No.: 2250-
0758,Volume-4, Issue-1, February-2014, Page
Number: 168-179

International Journal of Advanced Networking Applications (IJANA) ISSN No. : 0975-0290 62

[20] Vikas Sitaram Chomal, Dr. Jatinderkumar R.
Saini, “Significance of Software Documentation in
Software Development Process” International

Journal of Engineering Innovation & Research,
ISSN: 2277 – 5668, Volume 3, Issue 4

ABOUT AUTHORS

Vikas Sitaram Chomal – M.Phil, MCA and Research Scholar at Faculty of
Computer Science, Singhania University, Pacheri Bari, District – Jhunjhunu,
Rajasthan – 333515. He has more than 7 years of rich teaching experience.
Presently he is working as Assistant Professor at The Mandvi Education
Society Institute of Computer Studies – MCA, Mandvi, District – Surat,
Gujarat, India. Formely he was Assistant Professor (Ad hoc) at Narmada
College of Computer Application – MCA, Bharuch, Gujarat, India. He
worked as Principal (I/C) & Assistant Professor at Shri Manilal Kadakia
College of Management & Computer Studies, Ankleshwar, Gujarat, India.

Jatinderkumar R. Saini was awarded Ph.D. in Computer Science by Veer
Narmad South Gujarat University, Surat, Gujarat, India in the year 2009. He
has more than 8 years of rich professional experience including working at
Ministry of Info. Tech., New Delhi licensed CA under PKI at Ahmedabad,
Gujarat, India. Presently he is working as Director (I/C) & Associate
Professor at Narmada College of Computer Application, Bharuch, Gujarat,
India. He is also the Director (I.T), GTU’s Ankleshwar – Bharuch
Innovation Sankul. Formely, he was Associate Professor & GTU
Coordinator & HOD at S.P. College of Engineering, Visnagar, Gujarat,
India.

